
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2021 Philipp Kalytta 1

Securing DNS Communication for Client Systems
with dynamic DNS Filtering

 Philipp Kalytta
Institut für Nachrichtentechnik
Technische Hochschule Köln

Cologne, Germany
pkalytta@th-koeln.de

Abstract—Dynamic DNS filtering applications use the DNS
system to filter out DNS answers to clients, that query for
malicious hosts or content. This traffic between the client and
local resolver as well as to upstream nameservers is commonly
not protected against attackers. This paper provides an
approach to securing two commonly used filtering DNS
resolvers between the client and itself and on the upstream side
and compares them to Unbound, a validating, recursive, caching
DNS resolver and its features.

Keywords—DNS, DNS-over-HTTPs, DNS-over-TLS,
DNSSEC, DNS filtering, confidentiality, integrity protection, Pi-
hole, AdGuard, Unbound

I. INTRODUCTION

The Domain Name System, described in RFC 1034 [1]
and specified in RFC 1035 [2] provides the Internet standard
mechanism for name to IP address resolution, which was
revised and added upon multiple times. Relevant RFCs in the
context of this paper are [1], [2], [3] regarding DNS, [4], [5],
[6] and [7] regarding DNSSEC and [8], [9] regarding
encryption for DNS. DNS is an integral part of digital
communication, but the standard protocol provides no
security: It either uses unencrypted UDP over port 53 or
unencrypted TCP over port 53 to resolve names. Also, the
requested names in a query to a DNS server, could itself be
part of a malicious intent: As the user has no control over the
target domain name and what domains the hosts queries for
(at least in a common setup), there is also no control for the
user, to decide what content to get – it is entirely dependent on
the remote nameserver. This, in combination with a global rise
in internet advertisements [10] has led to the development of
DNS blocking solutions, that effectively stop the local host
from resolving the domain names of advertisement services or
malicious content by using curated lists of blocked domains.
These services, when deployed, mostly use the standard DNS
over Port 53, either by recursively resolving domains by
themselves [11], or by using one or more upstream (recursive)
resolver servers (i.e. Google and Cloudflare provide such
servers [12] [13]), that will then directly answer the query to
the local resolver/DNS software. All this communication is
not secure by default. This paper presents different approaches
to securing two commonly used DNS filtering applications
and compares their filtering capabilities to the Unbound [14]
DNS resolver software. Local resolver in the context of this
paper is always the network-local server that receives and
answers queries from the network clients (i.e. The Pi-hole
server, AdGuard server or Unbound server).

II. OBJECTIVE

A. How DNS Filtering works

DNS filtering solutions mainly rely on intersecting the
DNS traffic of clients: By configuring the DNS filter software
to act as the DNS resolver for a client, the client will send its

DNS queries to the resolver. This resolver will then typically
compare the requested domain name to internal blocking lists
or regular expressions that define filtering parameters. If the
domain does not match with these, the domain will be resolved
by the software normally. If it matches the list or a regular
expression, the resolver will not continue to resolve the
domain, but will instead send an answer to the client, that
contains bogus data (i.e., NXDOMAIN or a wildcard IP like
0.0.0.0): The client will therefore think, that the domain does
not exist or at least will not be able to connect to the hosts
behind the domain name. Therefore, the request is effectively
filtered out.

This paper focuses on the two most popular (by GitHub
Stars [15] [16]) open-source self-hostable DNS blocking
resolvers: Pi-hole and AdGuard Home. There exist other self-
hosting solutions like eBlocker and a number of services,
directly provided by large DNS resolvers, like Cloudflares
Family Filter [17].

DNS filters have the same common problem as every other
conventional DNS software: By default [18] [19], they do not
use or enforce extensions to the domain name system, that
provide confidentiality [8] [9] and/or integrity [4]. Neither
towards the upstream servers, nor towards clients. The goal of
this paper is to show these techniques can be deployed to DNS
filtering software and how this prevent or mitigates threats
against DNS communication. The special focus is on how
these protocols interact with each other in blocking and non-
blocking scenarios and to elaborate on how these solutions can
work together.

B. Insecure DNS Filtering Solutions

By default, only AdGuard Home achieves confidentiality
for the upstream resolving queries via DoH to Quad9, but it
does not verify the integrity via DNSSEC and does not
provide a secure way of communication for its own clients. Pi-
holes initial security is even worse: It does not even use
encryption for an upstream connection and also does not
provide it for clients, as well as no DNSSEC validation
(Integrity-protection can also be a problem, if enabled: See
Chapter V). As browsers are slowly deploying their own
secure DNS services to clients [20], it becomes less desirable
to use a local blocking DNS resolver, if it does not support at
least the same security principles. These insecure filtering
solutions lose their characteristic of increasing security by
blocking if they do not provide the same security regarding
confidentiality and integrity and protect against the common
threats against DNS.

C. Existing Threats against DNS

RFC 3833 [21] lists known threats to the Domain Name
System, of which some threats/special cases are presented
here again as information. Different sources also name

2

different lists of common threats [22] [23] [24] which overlap
mostly on these threats:

1) DNS Cache Poisoning
By sending wrong (spoofed) answers to the local DNS

resolver – either by sending them faster to the local resolver
than the original server or by sending them from the
responsible but hacked nameserver, an attacker can
incorporate these resource records in the cache of the local
resolver. Because DNS is not integrity protected, the local
nameserver has no way of knowing if the DNS data it received
is correct and must assume it is the right data. The original
DNS protocol stack contains some implicit mitigation for this
case (The Transaction ID [25]), but not in a cryptographically
secure way and it is known to be insecure [25].

2) Flooding Attack
There exist different types of flooding attacks against DNS

resolvers. As name resolution can be performed via UDP as
well as via TCP, both variants are attack surfaces for a
flooding attack. The goal of this attack is to overload the server
or interrupt the communication by exhausting the system
resources and available connection pool. There are variations
like the NXDOMAIN attack, which tries to overload the
resolver by asking for nonexistent domains, or the random
subdomain attack – or water torture attack – that floods the
server with random subdomains to try to overload it.

3) DNS Rebinding
 DNS Rebinding enables the attacker to target hosts inside

the local network of the victim. It effectively circumvents the
same-origin policy most browsers use to prevent JavaScript or
other locally executed code to access other systems that that it
originated from. After loading the code from the attacker’s
server into the victim’s browser, the attacker changes the
resource record associated with the domain, this can be done
very fast by setting a low TTL for the resource record. The
attacker changes it to a local IP address, this way, it is possible
for the script to attack a local host from the victim’s machine.
This is simplified by the fact, that most (home) networks have
the same layout (i.e., the router is having the first IP address
of the segment). This is often mitigated by denying responses
from nameservers on the internet that contain local IP
addresses or by setting a minimum TTL for all query answers,
which slows these attacks down.

4) Phantom Domain Attack
Phantom domains are domains, where the responsible

nameserver either does not answer or answers with a large
delay (This can be induced by the attacker). Querying for
those domains has the goal to make the local resolver wait for
the responses as long as possible to consume open
connections. This can be mitigated by setting a short max-wait
time for outgoing queries for the local resolver, assuming that
most nameservers will answer very fast (which must not be
the case).

5) Man-in-the-Middle Attack
An attacker that performs a Man-in-the-Middle (MITM)

attack can intercept all DNS traffic and can change or deny
responses or queries at will. As DNS is not integrity or
confidentiality-protected, this does only require the MITM to
route the DNS traffic through itself, which, for example is
possible by sending out rouge DHCP answers to clients in the
same network containing wrong DNS data or by using the
NDP for IPv6 [26].

III. SOLUTION APPROACH

The process for improving the security of DNS
communication for the previously named DNS filtering
applications on the downstream to clients as well as on the
upstream was divided into the following parts:

1) Identification of existing threats: This was covered in
the previous chapter.

2) Composition of possible countermeasures: A list of
measures that improve either in one or more parts of the three
primary focus points of information security: Confidentialty,
integrity and availablilty of data.

3) Technical outline of the interaction of the measures:
This defines how the different aspects of the measures
interact and they complement each other to improve security.

4) Description and setup of a test environment:
Implementation of a testing setup enables us to test for
improved security and enables the testing of features like
interaction (i.e., domain blocking) via API.

A. Countermeasures

1) DNSSEC
The Domain Name System Security Extensions

(DNSSEC) which are described in RFC 4033 [4] are adding
integrity of data and data origin authentication to the DNS by
using digital signatures over a set of resource records. It also
adds authenticated denial of existence of DNS records. This
protects against different type of attacks, i.e., a MITM cannot
generate a correctly authenticated DNSSEC secured answer to
a query for a domain name that does not exist. Its nonexistence
is provable by the DNSSEC records in the parent zone. In fact,
it protects the DNS against most of the threats presented in
RFC3833 [21] [27]. It does not introduce transaction security
in the sense of confidentiality. Most stub resolvers do not
enforce DNSSEC validation but rely on the local recursive
resolver to validate. This requires, to prevent manipulation of
the data in transit between the local resolver and the client
(stub), a form of secure channel (encryption) between resolver
and client. It also cannot protect against denial of service
(DoS) attacks but introduces some additional DoS
possibilities [28]. Also, a new attack, that was previously only
possible via zone-transfers, is possible: Zone enumeration.
This is targeted against authoritative zones and nameservers
and not further discussed here.

2) DNS-over-HTTPS and DNS-over-TLS
The internet standards DNS-over-HTTPS (DoH)

described in RFC 8484 and DNS-over-TLS (DoT) which is
described in RFC 7858 provide the ability to eliminate
eavesdropping on and tampering with data in transit by
providing transport encryption [8] [9]. A client can either try
to opportunistically learn about a privacy enabled DNS server
by attempting DNS over TLS on port 853 or it can rely on an
out-of-band configured privacy profile, where the server and
its key is known to the client, this provides a stronger trust
between server and client – The RFC for DoH explicitly
excludes the opportunistic approach for DoH capable clients,
this is only described for DoT. Deploying a DoT or DoH URI
to the clients to use for requests, always requires either trying
the known DNS server for support of DoT or manual or
automatic configuration via out-of-band methods (i.e., by
providing the URI via DHCP). Automatic configuration
entails other security risks (i.e., rouge DHCP server).

3

3) DNS Rebinding Protection Options
DNS rebinding can be prevented by configuring the DNS

server to error on answers coming from the internet containing
private IP addresses. This can affect some DNS enterprise
deployments that rely on name resolution for internal IP
addresses for their own domain by nameservers that are
reachable from the internet. There exist config options to
circumvent this [29] [30]. Also, the named applications
include a local cache. The minimum TTL for the cache can be
configured to never fall below a given limit, which slows a
rebinding attack down.

4) Rate-Limting and Timeouts
Overloading the server can be prevented by limiting two

factors: The number of queries that the server accepts in a
timespan and the time the server waits for a response from
upstream servers. Common DNS server software allows for
rate limiting and setting timeouts to help with overloading
attacks [31].

B. Technical Outline

To achieve integrity- and confidentiality-protected DNS
communication between a local client and the local (recursive)
DNS resolver, the following technical criteria must be met:

 The local resolver must support DoH or DoT,
preferably both, to achieve transport encryption. There
might be multiple steps to take to enable this for the
client as well as for the upstream resolving process
(When the local resolver is recursive, this might even
be impossible, as there is no good way for a
nameserver to indicate that it does support DoH or
DoT).

 The local recursive resolver must detect, if upstream
servers support DNSSEC (so sending a DO flag and
expecting an AD flag from the upstream server) should
validate resource records that it receives. This ensures,
that at least for zones that support DNSSEC, the
integrity can be proven. As the local resolver has
blocking capabilities, it might block some of the
DNSSEC signed records. If the client also enforces
validation of the records it receives, thus validating
against the DNSSEC chain, the client would be able to
detect the blocking of the correct query answer. Clients
should be configured to by default not strictly validate
answers received from their local recursive resolver
and must trust the resolver that it validates the
incoming answers for them.

To further reduce the attack possibilities, countermeasures
like the ones described in the previous chapter, that try to
prevent DNS rebinding and Denial of Service should be able
to be implemented by configuring the software. If there are no
obvious configuration options, it can be tested if this is already
part of the default behaviour.

C. Lab Environment and Software

As mentioned before, the selected software applications
are AdGuard Home, Pi-hole and for comparison purposes and
to analyze the integration possibilities of for DNS blocking
into by default non-blocking resolvers: Unbound. All can act
as a local caching resolver, and all can be configured to be
DNSSEC aware and validating. AdGuard by default supports
upstream DoT and is configured with Quad9 as upstream DNS
recursive resolver. It can only act as a forward resolver and
expects its own upstream recursive resolver. This is also true
for Pi-hole: The documentation also mentions Unbound

dns.google

Quad9

Cloudflare

Client A:
DoH/DoT-capable Client

that enforces DNSSEC

Client D:
Standard DNS Client

that enforces DNSSEC

Client B:
DoH/DoT-capable Client

that does not enforce DNSSEC

Client C:
Standard DNS Client

without DNSSEC

Integrity Protected
by DNSSEC &

transport
encrypted by DoH/

DoT

Only transport
encrypted by DoH/

DoT

Neither encrypted,
nor integrity

protected

Only integrity
protected by

DNSSEC

Clients Local Filtering Resolvers Upstream DNS ProvidersClient-Side DNS
Communication

Upstream DNS
Communcation

4

explicitly to function as upstream recursive resolver [32].
Unbound can function either as forwarding resolver or can
function as a recursive resolver.

By default, AdGuard Home supports DoH and DoT on the
client facing side, if configured with a valid X.509 certificate.
It then can be activated in the web interface. Pi-hole does not
support this configuration out-of-the-box. In the Lab
environment, this was achieved by installing BIND9 on the
same host as the Pi-hole software and setting the local Pi-hole
DNS resolver as upstream resolver for BIND9. BIND9 was
then configured to serve as DoT and DoH resolver for the
client. As this setup shared the same IP addresses for the Pi-
hole software and BIND9 software (same host), it is
indistinguishable for the clients and acted as one DNS server
supporting all protocols from the outside. This can also be
achieved with Unbound instead of BIND9. After this addition
to the Pi-hole host, both hosts (Pi-hole and AdGuard) allowed
for confidentiality and integrity protected communication to
the clients. To achieve upstream confidentiality for Pi-hole,
which is also not possible by default, cloudflared, a daemon
that supports receiving and forwarding DNS queries via
secure means to upstream servers, was locally installed on the
Pi-hole host. This complemented the system to be secure
client- and upstream-side. Unbound, as the third solution, can
be directly configured with a X.509 certificate to allow for
secure client configuration, as well as can be configured to use
either TLS or HTTPS for upstream DNS communication,
then, disabling its recursive features.

1) Scenarios and combinations considered
The following scenarios were configured and tested in

practice in the lab environment and compared regarding
expense, complexity, problems, common risks, and common
threats (See Chapter IV.):

TABLE I. LAB ENVIROMENT TESTING SCENARIOS

Scenario
Combinations

Resolver
Software

Filtering DNSSEC DoT/DoH

Pi-hole
plain
DNS

Pi-hole
Enabled and

tested for specific
domainsa

Not
requested

Not used

Pi-hole
plain
DNS
with
DNSSEC

Pi-hole Same as above
Requested

and
validated

Not used

Pi-hole
DoH with
DNSSEC

Pi-hole Same as above
Requested

and
validated

DoH
used

Pi-hole
DoH
without
DNSSEC

Pi-hole Same as above
Not

requested
DoH
used

Pi-hole
DoT with
DNSSEC

Pi-hole Same as above
Requested

and
validated

DoT used

Pi-hole
DoT
without
DNSSEC

Pi-hole Same as above
Not

requested
DoT used

AdGuard
plain
DNS

AdGuard Same as above
Not

requested
Not used

AdGuard
plain
DNS
with
DNSSEC

AdGuard Same as above
Requested

and
validated

Not used

Scenario
Combinations

Resolver
Software

Filtering DNSSEC DoT/DoH

AdGuard
DoH with
DNSSEC

AdGuard Same as above
Requested

and
validated

DoH
used

AdGuard
DoH
without
DNSSEC

AdGuard Same as above
Not

requested
DoH
used

AdGuard
DoT with
DNSSEC

AdGuard Same as above
Requested

and
validated

DoT used

AdGuard
DoT
without
DNSSEC

AdGuard Same as above
Not

requested
DoT used

Unbound
plain
DNS

Unbound Same as above
Not

requested
Not used

Unbound
plain
DNS
with
DNSSEC

Unbound Same as above
Requested

and
validated

Not used

Unbound
DoH with
DNSSEC

Unbound Same as above
Requested

and
validated

DoH
used

Unbound
DoH
without
DNSSEC

Unbound Same as above
Not

requested
DoH
used

Unbound
DoT with
DNSSEC

Unbound Same as above
Requested

and
validated

DoT used

Unbound
DoT
without
DNSSEC

Unbound Same as above
Not

requested
DoT used

a. There were multiple tests conducted: One domain that was configured to be blocked but not
DNSSEC signed, one that was blocked but comes from a signed zone and one domain that was

configured to not be blocked for comparison.

Fig. 1. Combinations of different test parameters for the different
capabilities of the used DNS software that were practically evaluated on
client facing side of the local resolvers.

Upstream on all three resolvers was configured to use DoH
to either Cloudflares DNS resolver, Google or Quad9.

2) APIs for Dynamic DNS Filtering
Pi-hole as well as AdGuard support two types of static

DNS filtering: They can use a list of domains the user can
input themselves (user-defined), that can use regular
expressions to detect domain names and can pull block lists
from the internet (which are curated externally) which are
mostly in the format of a hosts-file [33]. Pi-hole and AdGuard
both have a web interface that allows for manual configuration
of theses static lists. The internet-provided lists are typically
updated in regular time intervals (i.e., once per day). AdGuard
additionally maintains lists for common services (i.e., Netflix,
Facebook, Instagram) to specifically block these services.
These three types do not directly allow for dynamic detection
of malicious or unwanted domains that are not in these curated
lists.

Achieving dynamic DNS blocking requires at least a basic
API that allows for two things: Getting informed of the
domains that are requested by clients and adding and
removing domains from the blocklist. Ideally, it is possible to
decide if a domain should be blocked on the first query for the
given domain name, so that the answer from the blocking local
resolver can be directly changed if needed. Pi-hole does only

5

provide a Telnet based API for its internal FTLDNS service,
that allows only receiving statistics [34] – this concludes that
Pi-hole is not feasible for directly supporting dynamic DNS
blocking without changes to the software.

AdGuard provides an OpenAPI specified HTTP-based
API that is documented [35] and provides the log-API for
getting information about queried domain names. This does
not enable AdGuard to block initial DNS request, but only
enables the API user to retrospectively act by blocking the
domain name via the filtering-API. For comparison we can
look at Unbound and BIND9, which are non-blocking
resolvers by default, but their API can be used to enable
dynamic blocking:

With libunbound, the Unbound server provides an API for
manipulating incoming and outgoing DNS requests and
responses [36]. The API even has a Python interface [37],
which is a thin wrapper around the C API originally provided.
There exist examples [38] on how to locally manipulate zone
entries, which can be used for blocking-in-place, by using the
API to provide a blocking-capable DNS service that checks
incoming requests and decides if they will be blocked or not.

For BIND9, there is the possibility to use Dynamically
Loadable Zones (DLZ) or DynDBs [39]. DLZ extend BIND9
to load domain data from an external database, this interface
can be exploited to – instead of linking to a database – link to
a dynamic decision algorithm that decides on the blocking.
There exists documentation for that API, but its dated [40].
The DLZ API is also unable to handle DNSSEC data, which
is possible with DynDBs: RedHat created an LDAP back end
for the DynDB interface in BIND9 which allows for dynamic
domain names via LDAP [41]. The ISC also provides a test
implementation of a driver for DynDB via their GitHub
repository [42].

IV. RESULTS

Securing the DNS filtering/blocking software applications
each requires solution approaches that differ in expense,
complexity and allow for different levels of security. Not in
all configurations, all threats can be mitigated. It shows that
secure by default and security by design is not yet possible in
the DNS ecosystem, especially when using DNS blocking
software.

A. Expense And Complexity

Installation of all three applications is automatic, the initial
configuration works out of the box for non-secure
communication. Enabling DNSSEC validation for all three
can be easily done by enabling the configuration option. This
only requires an upstream resolver, that also supports
DNSSEC, which can be chosen freely by the user (i.e., chose
the one you trust the most). AdGuard reduces the expense and
complexity regarding the deployment of DoH and DoT by
allowing the upload of a X.509 certificate to the web interface,
which then in turn automatically activates DoH and DoT to
clients. For upstream, it already comes enabled with DoH and
DoT support. It even experimentally supports DNS-over-
QUIC. Pi-hole neither supports upstream DoH/DoT nor on the
client facing side. To enable it for clients, an additional local
resolver like BIND9 or Unbound must be set up on the same
host, to accept DoH/DoT connections from clients and
forward them to the local Pi-hole. The same procedure must
be done to enable upstream encryption: Setting a local resolver
as the upstream for Pi-hole, which then in turn is able to use

DoH/DoT to an upstream server. This increases the
susceptibility to errors and reduces the resiliency of the overall
system by increasing its complexity. Also, the implementation
and maintenance cost increase significantly. Unbound
provides means of enabling DoT and DoH as via it’s config
files, at least when working with a current version of
Unbound. DNSSEC is enabled by default in Unbound.

B. Problems And Common Risks

All three software setups suffer from the same problem
regrading privacy: When the upstream must be secured with
encryption, recursive name resolution cannot be done locally,
it must be done by the upstream server and the local resolver
must trust the answer. Fully encrypted recursive resolving
would only be possible for a query, if all nameservers that
would be recursively queried to answer the query support at
least one of the types of transport encryption and the local
resolver would opportunistically try to communicate over the
secure channel with them. There is not standard procedure for
detecting if a nameserver has such a secure channel, DoH even
forbids it in the RFC [9]. Also, there is no standard way of
secure recursive name resolving. This leaves the following
risk: You must trust the upstream DNS provider – On data that
is not DNSSEC signed, you have no way of telling if the data
has been tampered with by the upstream server provider.

1) Confidentiality
DNS-over-HTTPS has one big advantage over DNS-over-

TLS: It uses the same port as standard HTTPS, which makes
it harder (but not impossible, i.e., you still must connect to a
DNS resolver, by probing, it is still possible to identify it) to
distinguish it from standard traffic. DoT in turn is, if using the
standard port, detectable and blockable. Both protocols
provide confidentiality, but DoH provides slightly better
privacy.

Regarding Pi-hole: If chosen to not be complemented by
additional software, as mentioned before, it does not provide
confidentiality out-of-the box, neither on client-side, nor
upstream. For some setups (i.e., for inexperienced users), this
invalidates it as a deployment option.

2) Integrity
DNSSEC is supported by all three applications and only

requires the upstream servers to support it, too. Unbound
comes with already enabled DNSSEC validation, Pi-hole as
well as AdGuard can be configured over the web interface to
enforce it, too.

3) Availability
Even flooding the servers with large amount of DNS

queries did not stop service operations (See Section C below).
All servers have the same hardware specifications (2 Core
CPU @ 2.3 GHz, 1 GB RAM). Resource exhaustion is very
unlikely even at these levels when used in a local network. An
attacker that can send packets to the local blocking resolver
might try a DoS attack, the AdGuard software was observed
to detect a host that sends large bursts of queries and slows its
answering process – Pi-hole and Unbound do not do the same.
Availability could be improved further by hosting two
identical resolvers or even more to introduce redundancy and
enable load distribution or load balancing.

C. Threat Evaluation

Validating incoming DNS answers from the upstream
server via DNSSEC allows for reliable DNS cache poisoning
protection [21]. For Domains that do not support DNSSEC,

6

the local server must rely on the answer from the upstream
server and that it took measures to prevent DNS cache
poisoning on their end. The communication channel between
the local resolver and the upstream resolver can be protected
by DoH or DoT.

Flooding attacks were conducted against all three
applications by a single host with the following different
attack types:

1) Sending out bursts of DNS queries to random domains
that are known to not exist (NXDOMAIN Attack)

This was carried out against the default DNS endpoint
UDP port 53 and DoH Port 443. Only AdGuard on Port 53
seems to have a mitigation technique in place: It considerably
slows down the answering after the first few requests. The
other two applications did not show this behaviour.

2) Sending out bursts of DNS queries to random
subdomains that are known to not exists (Random Subdomain
Attack)

This showed the same results as with the NXDOMAIN
attack – only AdGuard with DNS over UDP slows the
answering process down.

3) SYN TCP Flood to Port 53 and Port 443
The SYN segments were alle crafted the same (i.e.,

payload, sequence number). All applications performed
similarly, only answering the first SYN and ignoring the
following SYNs from the same host.

4) UDP Flood to Port 53
The same behaviour of the application like with SYN

Floods shows on UDP Floods: Only the first datagram gets
answered by all resolvers.

5) DNS Rebinding Check
AdGuard did not filter out DNS answers that contained

private IPs but did set the TTL higher than it was received in
the original answer (From 60 seconds to 300). Pi-hole did
neither, it forwarded the original DNS answer with low TTL
containing the RFC 1918 address. Unbound increased the
TTL the same way as AdGuard and did also not remove the
RFC 1918 address. Unbound allows for configuration of the
minimum TTL via the configuration option cache-min-ttl and
allows for direct mitigation of DNS rebinding via the private-
address option.

V. DISCUSSION AND CONLUSION

The standard DNS provides no security in the sense of
confidentiality and integrity. It can not protect itself against
attacks like MITM. There are extensions to the DNS protocol
that aim to improve security:

DNSSEC provides integrity protection to the DNS
protocol by introducing transaction level data and data origin
authentication. It also provides a mechanism for denial of
existence. DNSSEC allows to detect name-based
authentication attacks but cannot protect against DoS attacks
nor can it provide confidentiality. Also not further discussed
here are the following points: Risk of compromise of
DNSSEC keys, Zone enumeration and key rollover problems.

Confidentiality is provided by both DoT and DoH, which
are ways to eliminate eavesdropping and tampering with data
in transit. Combining one of these protocols with DNSSEC
allows for confidentiality and integrity protected transfer of
DNS data. This can be further combined, like described in this

paper, by using these algorithms with blocking or filtering
DNS resolvers:

Blocking DNS resolvers like Pi-hole and AdGuard
provide means of blocking advertisements and malicious
content to users by altering DNS answers or stopping DNS
resolution for affected domains/names. Pi-hole cannot be
directly configured to use DoH or DoT, neither upstream nor
for clients. DNSSEC is directly supported. AdGuard supports
DNSSEC, DoH and DoT directly. Comparing to the
commonly used Unbound DNS resolver, which also
supported these protocols directly, Pi-hole lacked
functionality and therefore also security features. Integrating
these features should be a primary task for the developers.

API support for implementation of a dynamic DNS
blocking or filtering service was best supported by Unbound,
where it is possible to directly check and alter DNS records
via the API. AdGuard only allows for adding and removing
names from the blocking list, after they already were
requested at least once. Pi-hole does not provide an API,
which renders it unusable for dynamic DNS filtering, it only
supports static filter lists. API support should be expanded.

A. Integration and Deployment Into the Existing DNS
Structure

Problematic is the integration into the existing DNS
infrastructure. The local resolver might either have an
upstream resolver that it trusts – like configured for this paper
– or it might recursively lookup the requested domain name
itself for the client. From a security standpoint, it might be
wanted to let itself recursively ask the responsible
nameservers for the correct resource record instead of trusting
an upstream provider (which, for example, is configurable for
Unbound with IP-network-based access-control). Doing this
in a confidentiality protected manner is currently not
possible. Neither DoT nor DoH provide means of usage for
direct requests to authoritative nameservers. There is no
mechanism for direct secure requests from a local recursive
resolver to nameservers (with a fallback to insecure
communication). DNSSEC can be used for recursive name
resolution and this is configured to be enabled by default for
Unbound.
DoT and DoH both can be used for upstream communication
protection to an internet resolver (like Cloudflare, Quad9 or
Google Public DNS) – but cannot be used for direct
communication to nameservers – DoT provides an
opportunistic scheme to test servers if the support it – DoH
forbids this approach. There is no way for servers to indicate
that they support a privacy enabled protocol like DoT or DoH.
This also is a problem on client-side for the local resolver:
Clients must be explicitly configured to use the secure
communication channel; they cannot switch by themselves.
For both problems a secure negotiation mechanism, that
allows the client/resolver to detect, trust and automatically use
a secure communication channel to respective upstream
servers, is desirable. Browser manufacturers have begun to
implement their own servers into browsers to secure at least
this part of DNS communication by default [20]:

B. Regarding Confidentiality enabled Client Software

Modern browsers have started to make DNS requests via
DoH independently of the operating system itself [20] [43].
This obviously enables the applications to circumvent the
blocking and filtering of domains effectively. To solve this
problem, there are different approaches:

7

Chromium for example will only use DoH, when the DNS
provider, that is configured on the host, is contained in a
curated list [44] of DNS providers, that also provide DoH and
will only then upgrade to DoH from using the systems
standard DNS feature. When using a local Pi-hole or AdGuard
server, Chromium does not upgrade to DoH as the local server
is not in the auto-upgrade list.

Mozilla Firefox uses a so-called canary domain: use-
application-dns.net. If a local resolver like Pi-hole or AdGuard
returns a negative DNS response (NXDOMAIN) without an
error, Firefox detects the network as unsuitable for it’s internal
DoH protocol stack and will return to using the operating
systems DNS servers. But Mozilla states: “The use of this
domain is specified by Mozilla, as a limited-time measure
until a method for signaling the presence of DNS-based
content filtering is defined and adopted by an Internet
standards body” [45]. Both Pi-hole and AdGuard answer with
NXDOMAIN to signal that they implement additional
features and cannot be replaced by the browsers own DNS
provider.

C. Affecting Integrity With DNS Blocking

DNS blocking or filtering cannot be detected for non-
integrity protected domain names but can be detected by a
client if a domain name is integrity protected by DNSSEC and
DNSSEC is correctly deployed to the domain. This can be
done by the client if it requests DS records from the root to the
requested domain name. This way the client can verify if a
domain should be signed. If a blocking resolver blocks a DNS
resource record, it also needs to block the corresponding
RRSIG record. The client can detect if a domain should be
signed, but the server answers with a wrongly non-signed
record, or alternatively, answers with an NXDOMAIN, which
in turn would have to be a NSEC or NSEC3 record in response
(which by design would be signed). Even if the local resolver
blocks DS records and all signing data for the parent zones,
most clients have the DNS root key on their local system and
know that the root zone is signed. There is a way for a local
resolver to correctly sign the wrong answers generated by
blocking: The clients need a DNSSEC key signing key they
have in their trust store that is used by the local filtering
resolver for signing altered answers. As DNSSEC is gradually
rolled out further to the DNS, this might be needed in the
future, if clients enforce DNSSEC validation.

D. Security and Risk Assessment

Most of the threats against DNS that are described in
RFC3833 [21] can be prevented effectively by using
DNSSEC combined with a transport security protocol like
DoT or DoH. DNS blocking is nothing else than what is
described in the RFC under Chapter 2.4 as “Betrayal By
Trusted Server”. Following this reasoning, DNS blocking
might itself be seen as a security risk, especially when used
for blocking names that would be perfectly valid and legal
requests.

a) Common Attacks
Regarding common attacks like those described in before

in Chapter II.B, combining at least the named mechanisms
successfully prevents the following:

1. DNS Cache Poisoning is impossible for DNSSEC
signed domain names when the local resolver
enforces DNSSEC validation.

2. Man-in-the-Middle or Packet Interception Attacks
cannot be performed on a confidentiality protected
secure communication channel like provided by DoT
or DoH (assuming there is a certificate pinning
algorithm in use).

It does not protect against Denial-of-Service attacks like
flooding attacks or Phantom Domain attacks.

b) Bigger Attack Surface/Points of Failures
The system also introduces new problems, and some

Problems of standard DNS resolvers remain:

1. DNSSEC is complex to implement, and most
domains do not support it yet [46]. For unprotected
domains, attacks that target integrity, like Name
Chaining are still possible.

2. Response packet size of DNSSEC signed responses is
increased, this could be used in traffic amplification
attacks.

3. DNSSEC validation increases the workload for the
local resolver, this can be leveraged for Denial-of-
Service.

4. DoT and DoH require each an additional open TCP
socket for communication on the local resolver for
clients. This increases the attack surface for common
attacks like Denial-of-Service attacks, overflow
attacks or bypass attacks.

5. Especially for Pi-hole, that does not support DoT or
DoH natively, additional software must be used to add
these features, which increases the attack surface even
more.

VI. REFERENCES

[1] P. Mockapetris, "DOMAIN NAMES - CONCEPTS AND
FACILITIES," 11 1987. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc1034. [Accessed 21 09
2021].

[2] P. Mockapetris, "DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION," 11 1987. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc1035. [Accessed 21 09
2021].

[3] R. Elz and R. Bush, "Clarifications to the DNS Specification," 07
1997. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc2181. [Accessed 21 09
2021].

[4] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose,
"RFC4033 - DNS Security Introduction and Requirements,"
Network Working Group, 03 2005. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc4033. [Accessed 20 07
2021].

[5] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose,
"Resource Records for the DNS Security Extensions," 03 2005.
[Online]. [Accessed 21 09 2021].

[6] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose,
"Protocol Modifications for the DNS Security Extensions," 03
2005. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc4035. [Accessed 21 09
2021].

[7] D. Conrad, "Indicating Resolver Support of DNSSEC," 12 2001.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc3225.
[Accessed 21 09 2021].

[8] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels and P.
Hoffman, "RFC7858 - Specification for DNS over Transport Layer
Security (TLS)," 05 2016. [Online]. Available:

8

https://datatracker.ietf.org/doc/html/rfc7858. [Accessed 20 07
2021].

[9] P. Hoffman and P. McManus, "RFC 8484 - DNS Queries over
HTTPS (DoH)," 10 2018. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc8484. [Accessed 20 07
2021].

[10] PricewaterhouseCoopers, "IAB internet advertising revenue report -
2016 full year results," New York, 2016.

[11] Network Working Group, "RFC1034 - DOMAIN NAMES -
CONCEPTS AND FACILITIES," 11 1987. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc1034. [Accessed 19 07
2021].

[12] Google, "Google Public DNS," [Online]. Available:
https://dns.google/. [Accessed 19 07 2021].

[13] Cloudflare, Inc., "1.1.1.1 -- The free app that makes your Internet
safer.," [Online]. Available: https://cloudflare-dns.com/. [Accessed
19 07 2021].

[14] NLnet Labs, "NLnet Labs - Unbound - About," 2021. [Online].
Available: https://www.nlnetlabs.nl/projects/unbound/about/.
[Accessed 19 07 2021].

[15] GitHub, Inc., "Stargazers · AdguardTeam/AdGuardHome ·
GitHub," 20 07 2021. [Online]. Available:
https://github.com/AdguardTeam/AdGuardHome/stargazers.
[Accessed 20 07 2021].

[16] GitHub, Inc., "Stargazers · pi-hole/pi-hole · GitHub," 20 07 2021.
[Online]. Available: https://github.com/pi-hole/pi-hole/stargazers.
[Accessed 20 07 2021].

[17] Cloudflare, Inc., "1.1.1.1 FOR FAMILIES," [Online]. Available:
https://cloudflare-dns.com/family/. [Accessed 20 07 2021].

[18] AdGuard, "AdGuard Home: In-depth overview," 18 08 2020.
[Online]. Available: https://adguard.com/en/blog/in-depth-review-
adguard-home.html#dns. [Accessed 20 07 2021].

[19] Pi-hole LLC, "cloudflared (DoH) - Pi-hole documentation," 06 03
2021. [Online]. Available: https://docs.pi-
hole.net/guides/dns/cloudflared/. [Accessed 20 07 2021].

[20] Mozilla Foundation, "Firefox extends privacy and security of
Canadian internet users with by-default DNS-over-HTTPS rollout
in Canada," 08 07 2021. [Online]. Available:
https://blog.mozilla.org/en/mozilla/news/firefox-by-default-dns-
over-https-rollout-in-canada/. [Accessed 20 07 2021].

[21] D. Atkins and R. Austein, "Threat Analysis of the Domain Name
System (DNS)," 08 2004. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3833. [Accessed 22 07
2021].

[22] Cloudflare Inc., "DNS security | Cloudflare," [Online]. Available:
https://www.cloudflare.com/learning/dns/dns-security. [Accessed
22 09 2021].

[23] Infblox Inc., "Top Five DNS Security Attack Risks and How to
Avoid Them," 05 08 2013. [Online]. Available:
https://www.infoblox.com/wp-content/uploads/2016/04/infoblox-
whitepaper-top5-dns-security-attack-risks-how-to-avoid-
them_0.pdf. [Accessed 22 09 2021].

[24] E. Borges, "The Most Popular Types of DNS Attacks,"
Securitytrails, 22 11 2018. [Online]. Available:
https://securitytrails.com/blog/most-popular-types-dns-attacks.
[Accessed 22 09 2021].

[25] C. Mitchell and S. Ariyapperuma, "3.1.2 Transaction ID Guessing,"
in Security vulnerabilities in DNS and DNSSEC, Egham, 2007, p. 2.

[26] J. Jeong, S. Park, L. Beloeil and S. Madanapalli, "RFC8106 - IPv6
Router Advertisement Options for DNS Configuration," 03 2017.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc8106.
[Accessed 21 07 2021].

[27] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose,
"RFC4033 - DNS Security Introduction and Requirements - Section
3," Network Working Group, 03 2005. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc4033#section-3. [Accessed
20 07 2021].

[28] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose,
"RFC4033 - DNS Security Introduction and Requirements - Section
12," Network Working Group, 03 2005. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc4033#section-12. [Accessed
20 07 2021].

[29] NLnet Labs, "NLnet Labs Documentation - Unbound -
unbound.conf.5," 09 02 2021. [Online]. Available:
https://nlnetlabs.nl/documentation/unbound/unbound.conf/.
[Accessed 22 07 2021].

[30] Internet Systems Consortium, "4. BIND 9 Configuration Reference
— BIND 9 documentation | Content Filtering," 2021. [Online].
Available:
https://bind9.readthedocs.io/en/latest/reference.html?highlight=rebi
nding#content-filtering. [Accessed 22 07 2021].

[31] Internet Systems Consortium, "4. BIND 9 Configuration Reference
— BIND 9 documentation | Response Rate Limiting," 2021.
[Online]. Available:
https://bind9.readthedocs.io/en/latest/reference.html?highlight=rate
%20limiting#response-rate-limiting. [Accessed 22 07 2021].

[32] Pi-hole LLC, "Pi-hole documentation | Pi-hole as All-Around DNS
Solution," 19 01 2021. [Online]. Available: https://docs.pi-
hole.net/guides/dns/unbound/. [Accessed 24 07 2021].

[33] M. Srivastava, "hosts(5) — Linux manual page," 2000. [Online].
Available: https://man7.org/linux/man-pages/man5/hosts.5.html.
[Accessed 26 07 2021].

[34] Pi-hole LLC, "Telnet API - Pi-hole documentation," 05 02 2020.
[Online]. Available: https://docs.pi-hole.net/ftldns/telnet-api/.
[Accessed 26 07 2021].

[35] AdGuard Team, "AdGuardHome/openapi at master ·
AdguardTeam/AdGuardHome · GitHub," 20 07 2021. [Online].
Available:
https://github.com/AdguardTeam/AdGuardHome/tree/master/opena
pi. [Accessed 26 07 2021].

[36] NLnet Labs, "NLnet Labs Documentation - Unbound -
libunbound.3," 09 02 2021. [Online]. Available:
https://www.nlnetlabs.nl/documentation/unbound/libunbound/.
[Accessed 26 07 2021].

[37] NLnet Labs, "NLnet Labs Documentation - Unbound - Python
libunbound docs," 2021. [Online]. Available:
https://www.nlnetlabs.nl/documentation/unbound/pyunbound/.
[Accessed 26 07 2021].

[38] Z. Vasicek and M. Vavrusa, "Local zone manipulation —
pyUnbound v1.0.0 documentation," 12 01 2009. [Online].
Available: http://www.fit.vutbr.cz/~vasicek/nic-
vip/pyunbound/examples/example6.html. [Accessed 26 07 2021].

[39] Internet Systems Consortium, "5. Advanced DNS Features —
BIND 9 documentation," 2021. [Online]. Available:
https://bind9.readthedocs.io/en/latest/advanced.html#dynamically-
loadable-zones-dlz. [Accessed 26 07 2021].

[40] Stichting NLnet, "BIND DLZ Home," 2004. [Online]. Available:
http://bind-dlz.sourceforge.net/. [Accessed 26 07 2021].

[41] T. Krizek and Others, "Overview - bind-dyndb-ldap - Pagure.io,"
17 06 2021. [Online]. Available: https://pagure.io/bind-dyndb-ldap.
[Accessed 26 07 2021].

[42] Internet Systems Consortium, "bind9/bin/tests/system/dyndb/driver
at main · isc-projects/bind9 · GitHub," 22 05 2021. [Online].
Available: https://github.com/isc-
projects/bind9/tree/main/bin/tests/system/dyndb/driver. [Accessed
26 07 2021].

[43] The Chromium Authors, "DNS over HTTPS (aka DoH)," [Online].
Available: https://www.chromium.org/developers/dns-over-https.
[Accessed 22 09 2021].

[44] The Chromium Authors, "net/dns/public/doh_provider_entry.cc -
Chromium Code Search," 2020. [Online]. Available:
https://source.chromium.org/chromium/chromium/src/+/master:net/
dns/public/doh_provider_entry.cc. [Accessed 22 09 2021].

[45] Mozilla Corporation, "Canary domain - use-application-dns.net |
Firefox Help," [Online]. Available: https://support.mozilla.org/en-
US/kb/canary-domain-use-application-dnsnet. [Accessed 22 09
2021].

[46] R. Lamb, "DNSSEC Deployment Report," 05 08 2021. [Online].
Available: http://rick.eng.br/dnssecstat/. [Accessed 05 08 2021].

9

VII. APPENDIX

A. Software

TABLE II. USED SOFTWARE VERSIONS AND REPOSITORIES

Software
Software Information

Version Repository Remark

Pi-hole v5.3.1

official GitHub-
Repository:

https://github.com/pi-
hole/pi-hole/releases

Unbound 1.12.0-1

official GitHub-
Repository:

https://github.com/NL
netLabs/

unbound/releases

AdGuard
Home

v0.106.3

official GitHub-
Repository:

https://github.com/
AdguardTeam/AdGuar

dHome/
releases

knot-
dnsutils

3.1.0

official Linux-
Repository: deb

http://ppa.launchpad.n
et/cz.nic-labs/knot-

dns-latest/ubuntu focal
main

Used for DoT
and DoH

requests to
servers

dnspython
2.1.0 for
Python
3.8

PyPI:
https://pypi.org/project

/dnspython/

Used for
NXDOMAIN

and sub-domain
attack tests

Scapy
2.4.5 for
Python
3.8

PyPI:
https://pypi.org/project

/scapy/

Used for
flooding attack

tests

Fig. 2. Listing of all software with the used version number (Older
versions will most likely lack features)

B. Timings Data

Timing tests were conducted on a small scale on the
three applications regarding answer timings on flooding
attacks, NXDOMAIN and subdomain attacks. Results can
be found here: https://www.kalytta.net/th-assets/results-
timings.CSV. These are only for comparison and not clear
enough to draw conclusions from it. Interestingly, AdGuard
performed poorly on insecure requests. This was not further
investigated.

C. Scripts

The scripts used for the tests can be found here:
https://www.kalytta.net/th-assets/scripts/

D. Configuration Files

The configuration files for Unbound can be found here:
https://www.kalytta.net/th-assets/configs/

