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local resolver as well as to upstream nameservers is commonly 
not protected against attackers. This paper provides an 
approach to securing two commonly used filtering DNS 
resolvers between the client and itself and on the upstream side 
and compares them to Unbound, a validating, recursive, caching 
DNS resolver and its features. 

Keywords—DNS, DNS-over-HTTPs, DNS-over-TLS, 
DNSSEC, DNS filtering, confidentiality, integrity protection, Pi-
hole, AdGuard, Unbound 

I. INTRODUCTION 

The Domain Name System, described in RFC 1034 [1] 
and specified in RFC 1035 [2] provides the Internet standard 
mechanism for name to IP address resolution, which was 
revised and added upon multiple times. Relevant RFCs in the 
context of this paper are [1], [2], [3] regarding DNS, [4], [5], 
[6] and [7] regarding DNSSEC and [8], [9] regarding 
encryption for DNS. DNS is an integral part of digital 
communication, but the standard protocol provides no 
security: It either uses unencrypted UDP over port 53 or 
unencrypted TCP over port 53 to resolve names. Also, the 
requested names in a query to a DNS server, could itself be 
part of a malicious intent: As the user has no control over the 
target domain name and what domains the hosts queries for 
(at least in a common setup), there is also no control for the 
user, to decide what content to get – it is entirely dependent on 
the remote nameserver. This, in combination with a global rise 
in internet advertisements [10] has led to the development of 
DNS blocking solutions, that effectively stop the local host 
from resolving the domain names of advertisement services or 
malicious content by using curated lists of blocked domains. 
These services, when deployed, mostly use the standard DNS 
over Port 53, either by recursively resolving domains by 
themselves [11], or by using one or more upstream (recursive) 
resolver servers (i.e. Google and Cloudflare provide such 
servers [12] [13]), that will then directly answer the query to 
the local resolver/DNS software. All this communication is 
not secure by default. This paper presents different approaches 
to securing two commonly used DNS filtering applications 
and compares their filtering capabilities to the Unbound [14] 
DNS resolver software. Local resolver in the context of this 
paper is always the network-local server that receives and 
answers queries from the network clients (i.e. The Pi-hole 
server, AdGuard server or Unbound server). 

II. OBJECTIVE 

A. How DNS Filtering works 

DNS filtering solutions mainly rely on intersecting the 
DNS traffic of clients: By configuring the DNS filter software 
to act as the DNS resolver for a client, the client will send its 

DNS queries to the resolver. This resolver will then typically 
compare the requested domain name to internal blocking lists 
or regular expressions that define filtering parameters. If the 
domain does not match with these, the domain will be resolved 
by the software normally. If it matches the list or a regular 
expression, the resolver will not continue to resolve the 
domain, but will instead send an answer to the client, that 
contains bogus data (i.e., NXDOMAIN or a wildcard IP like 
0.0.0.0): The client will therefore think, that the domain does 
not exist or at least will not be able to connect to the hosts 
behind the  domain name. Therefore, the request is effectively 
filtered out. 

This paper focuses on the two most popular (by GitHub 
Stars [15] [16]) open-source self-hostable DNS blocking 
resolvers: Pi-hole and AdGuard Home. There exist other self-
hosting solutions like eBlocker and a number of services, 
directly provided by large DNS resolvers, like Cloudflares 
Family Filter [17]. 

DNS filters have the same common problem as every other 
conventional DNS software: By default [18] [19], they do not 
use or enforce extensions to the domain name system, that 
provide confidentiality [8] [9] and/or integrity [4]. Neither 
towards the upstream servers, nor towards clients. The goal of 
this paper is to show these techniques can be deployed to DNS 
filtering software and how this prevent or mitigates threats 
against DNS communication. The special focus is on how 
these protocols interact with each other in blocking and non-
blocking scenarios and to elaborate on how these solutions can 
work together. 

B. Insecure DNS Filtering Solutions 

By default, only AdGuard Home achieves confidentiality 
for the upstream resolving queries via DoH to Quad9, but it 
does not verify the integrity via DNSSEC and does not 
provide a secure way of communication for its own clients. Pi-
holes initial security is even worse: It does not even use 
encryption for an upstream connection and also does not 
provide it for clients, as well as no DNSSEC validation 
(Integrity-protection can also be a problem, if enabled: See 
Chapter V). As browsers are slowly deploying their own 
secure DNS services to clients [20], it becomes less desirable 
to use a local blocking DNS resolver, if it does not support at 
least the same security principles. These insecure filtering 
solutions lose their characteristic of increasing security by 
blocking if they do not provide the same security regarding 
confidentiality and integrity and protect against the common 
threats against DNS. 

C. Existing Threats against DNS 

RFC 3833 [21] lists known threats to the Domain Name 
System, of which some threats/special cases are presented 
here again as information. Different sources also name 
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different lists of common threats [22] [23] [24] which overlap 
mostly on these threats: 

1) DNS Cache Poisoning 
By sending wrong (spoofed) answers to the local DNS 

resolver – either by sending them faster to the local resolver 
than the original server or by sending them from the 
responsible but hacked nameserver, an attacker can 
incorporate these resource records in the cache of the local 
resolver. Because DNS is not integrity protected, the local 
nameserver has no way of knowing if the DNS data it received 
is correct and must assume it is the right data. The original 
DNS protocol stack contains some implicit mitigation for this 
case (The Transaction ID [25]), but not in a cryptographically 
secure way and it is known to be insecure [25]. 

2) Flooding Attack 
There exist different types of flooding attacks against DNS 

resolvers. As name resolution can be performed via UDP as 
well as via TCP, both variants are attack surfaces for a 
flooding attack. The goal of this attack is to overload the server 
or interrupt the communication by exhausting the system 
resources and available connection pool. There are variations 
like the NXDOMAIN attack, which tries to overload the 
resolver by asking for nonexistent domains, or the random 
subdomain attack – or water torture attack – that floods the 
server with random subdomains to try to overload it. 

3) DNS Rebinding 
 DNS Rebinding enables the attacker to target hosts inside 

the local network of the victim. It effectively circumvents the 
same-origin policy most browsers use to prevent JavaScript or 
other locally executed code to access other systems that that it 
originated from. After loading the code from the attacker’s 
server into the victim’s browser, the attacker changes the 
resource record associated with the domain, this can be done 
very fast by setting a low TTL for the resource record. The 
attacker changes it to a local IP address, this way, it is possible 
for the script to attack a local host from the victim’s machine. 
This is simplified by the fact, that most (home) networks have 
the same layout (i.e., the router is having the first IP address 
of the segment). This is often mitigated by denying responses 
from nameservers on the internet that contain local IP 
addresses or by setting a minimum TTL for all query answers, 
which slows these attacks down. 

4) Phantom Domain Attack 
Phantom domains are domains, where the responsible 

nameserver either does not answer or answers with a large 
delay (This can be induced by the attacker). Querying for 
those domains has the goal to make the local resolver wait for 
the responses as long as possible to consume open 
connections. This can be mitigated by setting a short max-wait 
time for outgoing queries for the local resolver, assuming that 
most nameservers will answer very fast (which must not be 
the case). 

5) Man-in-the-Middle Attack 
An attacker that performs a Man-in-the-Middle (MITM) 

attack can intercept all DNS traffic and can change or deny 
responses or queries at will. As DNS is not integrity or 
confidentiality-protected, this does only require the MITM to 
route the DNS traffic through itself, which, for example is 
possible by sending out rouge DHCP answers to clients in the 
same network containing wrong DNS data or by using the 
NDP for IPv6 [26].  

III. SOLUTION APPROACH 

The process for improving the security of DNS 
communication for the previously named DNS filtering 
applications on the downstream to clients as well as on the 
upstream was divided into the following parts: 

1)  Identification of existing threats: This was covered in 
the previous chapter. 

2) Composition of possible countermeasures: A list of 
measures that improve either in one or more parts of the three 
primary focus points of information security: Confidentialty, 
integrity and availablilty of data. 

3) Technical outline of the interaction of the measures: 
This defines how the different aspects of the measures 
interact and they complement each other to improve security.  

4) Description and setup of a test environment: 
Implementation of a testing setup enables us to test for 
improved security and enables the testing of features like 
interaction (i.e., domain blocking) via API. 

A. Countermeasures 

1) DNSSEC 
The Domain Name System Security Extensions 

(DNSSEC) which are described in RFC 4033 [4] are adding 
integrity of data and data origin authentication to the DNS by 
using digital signatures over a set of resource records. It also 
adds authenticated denial of existence of DNS records. This 
protects against different type of attacks, i.e., a MITM cannot 
generate a correctly authenticated DNSSEC secured answer to 
a query for a domain name that does not exist. Its nonexistence 
is provable by the DNSSEC records in the parent zone. In fact, 
it protects the DNS against most of the threats presented in 
RFC3833 [21] [27]. It does not introduce transaction security 
in the sense of confidentiality. Most stub resolvers do not 
enforce DNSSEC validation but rely on the local recursive 
resolver to validate. This requires, to prevent manipulation of 
the data in transit between the local resolver and the client 
(stub), a form of secure channel (encryption) between resolver 
and client. It also cannot protect against denial of service 
(DoS) attacks but introduces some additional DoS 
possibilities [28]. Also, a new attack, that was previously only 
possible via zone-transfers, is possible: Zone enumeration. 
This is targeted against authoritative zones and nameservers 
and not further discussed here. 

2) DNS-over-HTTPS and DNS-over-TLS 
The internet standards DNS-over-HTTPS (DoH) 

described in RFC 8484 and DNS-over-TLS (DoT) which is 
described in RFC 7858 provide the ability to eliminate 
eavesdropping on and tampering with data in transit by 
providing transport encryption [8] [9]. A client can either try 
to opportunistically learn about a privacy enabled DNS server 
by attempting DNS over TLS on port 853 or it can rely on an 
out-of-band configured privacy profile, where the server and 
its key is known to the client, this provides a stronger trust 
between server and client – The RFC for DoH explicitly 
excludes the opportunistic approach for DoH capable clients, 
this is only described for DoT. Deploying a DoT or DoH URI 
to the clients to use for requests, always requires either trying 
the known DNS server for support of DoT or manual or 
automatic configuration via out-of-band methods (i.e., by 
providing the URI via DHCP). Automatic configuration 
entails other security risks (i.e., rouge DHCP server).  
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3) DNS Rebinding Protection Options 
DNS rebinding can be prevented by configuring the DNS 

server to error on answers coming from the internet containing 
private IP addresses. This can affect some DNS enterprise 
deployments that rely on name resolution for internal IP 
addresses for their own domain by nameservers that are 
reachable from the internet. There exist config options to 
circumvent this [29] [30]. Also, the named applications 
include a local cache. The minimum TTL for the cache can be 
configured to never fall below a given limit, which slows a 
rebinding attack down. 

4) Rate-Limting and Timeouts 
Overloading the server can be prevented by limiting two 

factors: The number of queries that the server accepts in a 
timespan and the time the server waits for a response from 
upstream servers. Common DNS server software allows for 
rate limiting and setting timeouts to help with overloading 
attacks [31]. 

B. Technical Outline 

To achieve integrity- and confidentiality-protected DNS 
communication between a local client and the local (recursive) 
DNS resolver, the following technical criteria must be met: 

 The local resolver must support DoH or DoT, 
preferably both, to achieve transport encryption. There 
might be multiple steps to take to enable this for the 
client as well as for the upstream resolving process 
(When the local resolver is recursive, this might even 
be impossible, as there is no good way for a 
nameserver to indicate that it does support DoH or 
DoT). 

 The local recursive resolver must detect, if upstream 
servers support DNSSEC (so sending a DO flag and  
expecting an AD flag from the upstream server) should 
validate resource records that it receives. This ensures, 
that at least for zones that support DNSSEC, the 
integrity can be proven. As the local resolver has 
blocking capabilities, it might block some of the 
DNSSEC signed records. If the client also enforces 
validation of the records it receives, thus validating 
against the DNSSEC chain, the client would be able to 
detect the blocking of the correct query answer. Clients 
should be configured to by default not strictly validate 
answers received from their local recursive resolver 
and must trust the resolver that it validates the 
incoming answers for them. 

To further reduce the attack possibilities, countermeasures 
like the ones described in the previous chapter, that try to 
prevent DNS rebinding and Denial of Service should be able 
to be implemented by configuring the software. If there are no 
obvious configuration options, it can be tested if this is already 
part of the default behaviour. 

C. Lab Environment and Software 

As mentioned before, the selected software applications 
are AdGuard Home, Pi-hole and for comparison purposes and 
to analyze the integration possibilities of for DNS blocking 
into by default non-blocking resolvers: Unbound. All can act 
as a local caching resolver, and all can be configured to be 
DNSSEC aware and validating. AdGuard by default supports 
upstream DoT and is configured with Quad9 as upstream DNS 
recursive resolver. It can only act as a forward resolver and 
expects its own upstream recursive resolver. This is also true 
for Pi-hole: The documentation also mentions Unbound 
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explicitly to function as upstream recursive resolver [32]. 
Unbound can function either as forwarding resolver or can 
function as a recursive resolver.  

By default, AdGuard Home supports DoH and DoT on the 
client facing side, if configured with a valid X.509 certificate. 
It then can be activated in the web interface. Pi-hole does not 
support this configuration out-of-the-box. In the Lab 
environment, this was achieved by installing BIND9 on the 
same host as the Pi-hole software and setting the local Pi-hole 
DNS resolver as upstream resolver for BIND9. BIND9 was 
then configured to serve as DoT and DoH resolver for the 
client. As this setup shared the same IP addresses for the Pi-
hole software and BIND9 software (same host), it is 
indistinguishable for the clients and acted as one DNS server 
supporting all protocols from the outside. This can also be 
achieved with Unbound instead of BIND9. After this addition 
to the Pi-hole host, both hosts (Pi-hole and AdGuard) allowed 
for confidentiality and integrity protected communication to 
the clients. To achieve upstream confidentiality for Pi-hole, 
which is also not possible by default, cloudflared, a daemon 
that supports receiving and forwarding DNS queries via 
secure means to upstream servers, was locally installed on the 
Pi-hole host. This complemented the system to be secure 
client- and upstream-side. Unbound, as the third solution, can 
be directly configured with a X.509 certificate to allow for 
secure client configuration, as well as can be configured to use 
either TLS or HTTPS for upstream DNS communication, 
then, disabling its recursive features.  

1) Scenarios and combinations considered 
The following scenarios were configured and tested in 

practice in the lab environment and compared regarding 
expense, complexity, problems, common risks, and common 
threats (See Chapter IV.): 

TABLE I.  LAB ENVIROMENT TESTING SCENARIOS 

Scenario 
Combinations 

Resolver 
Software 

Filtering DNSSEC DoT/DoH 

Pi-hole 
plain 
DNS 

Pi-hole 
Enabled and 

tested for specific 
domainsa 

Not 
requested 

Not used 

Pi-hole 
plain 
DNS 
with 
DNSSEC 

Pi-hole Same as above 
Requested 

and 
validated 

Not used 

Pi-hole 
DoH with 
DNSSEC 

Pi-hole Same as above 
Requested 

and 
validated 

DoH 
used 

Pi-hole 
DoH 
without 
DNSSEC 

Pi-hole Same as above 
Not 

requested 
DoH 
used 

Pi-hole 
DoT with 
DNSSEC 

Pi-hole Same as above 
Requested 

and 
validated 

DoT used 

Pi-hole 
DoT 
without 
DNSSEC 

Pi-hole Same as above 
Not 

requested 
DoT used 

AdGuard 
plain 
DNS 

AdGuard Same as above 
Not 

requested 
Not used 

AdGuard 
plain 
DNS 
with 
DNSSEC 

AdGuard Same as above 
Requested 

and 
validated 

Not used 

Scenario 
Combinations 

Resolver 
Software 

Filtering DNSSEC DoT/DoH 

AdGuard 
DoH with 
DNSSEC 

AdGuard Same as above 
Requested 

and 
validated 

DoH 
used 

AdGuard 
DoH 
without 
DNSSEC 

AdGuard Same as above 
Not 

requested 
DoH 
used 

AdGuard 
DoT with 
DNSSEC 

AdGuard Same as above 
Requested 

and 
validated 

DoT used 

AdGuard 
DoT 
without 
DNSSEC 

AdGuard Same as above 
Not 

requested 
DoT used 

Unbound 
plain 
DNS 

Unbound Same as above 
Not 

requested 
Not used 

Unbound 
plain 
DNS 
with 
DNSSEC 

Unbound Same as above 
Requested 

and 
validated 

Not used 

Unbound 
DoH with 
DNSSEC 

Unbound Same as above 
Requested 

and 
validated 

DoH 
used 

Unbound 
DoH 
without 
DNSSEC 

Unbound Same as above 
Not 

requested 
DoH 
used 

Unbound 
DoT with 
DNSSEC 

Unbound Same as above 
Requested 

and 
validated 

DoT used 

Unbound 
DoT 
without 
DNSSEC 

Unbound Same as above 
Not 

requested 
DoT used 

a. There were multiple tests conducted: One domain that was configured to be blocked but not 
DNSSEC signed, one that was blocked but comes from a signed zone and one domain that was 

configured to not be blocked for comparison. 

Fig. 1. Combinations of different test parameters for the different 
capabilities of the used DNS software that were practically evaluated on 
client facing side of the local resolvers. 

Upstream on all three resolvers was configured to use DoH 
to either Cloudflares DNS resolver, Google or Quad9. 

2) APIs for Dynamic DNS Filtering 
Pi-hole as well as AdGuard support two types of static 

DNS filtering: They can use a list of domains the user can 
input themselves (user-defined), that can use regular 
expressions to detect domain names and can pull block lists 
from the internet (which are curated externally) which are 
mostly in the format of a hosts-file [33]. Pi-hole and AdGuard 
both have a web interface that allows for manual configuration 
of theses static lists. The internet-provided lists are typically 
updated in regular time intervals (i.e., once per day). AdGuard 
additionally maintains lists for common services (i.e., Netflix, 
Facebook, Instagram) to specifically block these services. 
These three types do not directly allow for dynamic detection 
of malicious or unwanted domains that are not in these curated 
lists.  

Achieving dynamic DNS blocking requires at least a basic 
API that allows for two things: Getting informed of the 
domains that are requested by clients and adding and 
removing domains from the blocklist. Ideally, it is possible to 
decide if a domain should be blocked on the first query for the 
given domain name, so that the answer from the blocking local 
resolver can be directly changed if needed. Pi-hole does only 
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provide a Telnet based API for its internal FTLDNS service, 
that allows only receiving statistics [34] – this concludes that 
Pi-hole is not feasible for directly supporting dynamic DNS 
blocking without changes to the software.  

AdGuard provides an OpenAPI specified HTTP-based 
API that is documented [35] and provides the log-API for 
getting information about queried domain names. This does 
not enable AdGuard to block initial DNS request, but only 
enables the API user to retrospectively act by blocking the 
domain name via the filtering-API. For comparison we can 
look at Unbound and BIND9, which are non-blocking 
resolvers by default, but their API can be used to enable 
dynamic blocking: 

With libunbound, the Unbound server provides an API for 
manipulating incoming and outgoing DNS requests and 
responses [36]. The API even has a Python interface [37], 
which is a thin wrapper around the C API originally provided. 
There exist examples [38] on how to locally manipulate zone 
entries, which can be used for blocking-in-place, by using the 
API to provide a blocking-capable DNS service that checks 
incoming requests and decides if they will be blocked or not. 

For BIND9, there is the possibility to use Dynamically 
Loadable Zones (DLZ) or DynDBs [39]. DLZ extend BIND9 
to load domain data from an external database, this interface 
can be exploited to – instead of linking to a database – link to 
a dynamic decision algorithm that decides on the blocking. 
There exists documentation for that API, but its dated [40]. 
The DLZ API is also unable to handle DNSSEC data, which 
is possible with DynDBs: RedHat created an LDAP back end 
for the DynDB interface in BIND9 which allows for dynamic 
domain names via LDAP [41]. The ISC also provides a test 
implementation of a driver for DynDB via their GitHub 
repository [42]. 

IV. RESULTS 

Securing the DNS filtering/blocking software applications 
each requires solution approaches that differ in expense, 
complexity and allow for different levels of security. Not in 
all configurations, all threats can be mitigated. It shows that 
secure by default and security by design is not yet possible in 
the DNS ecosystem, especially when using DNS blocking 
software. 

A. Expense And Complexity 

Installation of all three applications is automatic, the initial 
configuration works out of the box for non-secure 
communication. Enabling DNSSEC validation for all three 
can be easily done by enabling the configuration option. This 
only requires an upstream resolver, that also supports 
DNSSEC, which can be chosen freely by the user (i.e., chose 
the one you trust the most). AdGuard reduces the expense and 
complexity regarding the deployment of DoH and DoT by 
allowing the upload of a X.509 certificate to the web interface, 
which then in turn automatically activates DoH and DoT to 
clients.  For upstream, it already comes enabled with DoH and 
DoT support. It even experimentally supports DNS-over-
QUIC. Pi-hole neither supports upstream DoH/DoT nor on the 
client facing side. To enable it for clients, an additional local 
resolver like BIND9 or Unbound must be set up on the same 
host, to accept DoH/DoT connections from clients and 
forward them to the local Pi-hole. The same procedure must 
be done to enable upstream encryption: Setting a local resolver 
as the upstream for Pi-hole, which then in turn is able to use 

DoH/DoT to an upstream server. This increases the 
susceptibility to errors and reduces the resiliency of the overall 
system by increasing its complexity. Also, the implementation 
and maintenance cost increase significantly. Unbound 
provides means of enabling DoT and DoH as via it’s config 
files, at least when working with a current version of 
Unbound. DNSSEC is enabled by default in Unbound. 

B. Problems And Common Risks 

All three software setups suffer from the same problem 
regrading privacy: When the upstream must be secured with 
encryption, recursive name resolution cannot be done locally, 
it must be done by the upstream server and the local resolver 
must trust the answer. Fully encrypted recursive resolving 
would only be possible for a query, if all nameservers that 
would be recursively queried to answer the query support at 
least one of the types of transport encryption and the local 
resolver would opportunistically try to communicate over the 
secure channel with them. There is not standard procedure for 
detecting if a nameserver has such a secure channel, DoH even 
forbids it in the RFC [9]. Also, there is no standard way of 
secure recursive name resolving. This leaves the following 
risk: You must trust the upstream DNS provider – On data that 
is not DNSSEC signed, you have no way of telling if the data 
has been tampered with by the upstream server provider. 

1) Confidentiality 
DNS-over-HTTPS has one big advantage over DNS-over-

TLS: It uses the same port as standard HTTPS, which makes 
it harder (but not impossible, i.e., you still must connect to a 
DNS resolver, by probing, it is still possible to identify it) to 
distinguish it from standard traffic. DoT in turn is, if using the 
standard port, detectable and blockable. Both protocols 
provide confidentiality, but DoH provides slightly better 
privacy. 

Regarding Pi-hole: If chosen to not be complemented by 
additional software, as mentioned before, it does not provide 
confidentiality out-of-the box, neither on client-side, nor 
upstream. For some setups (i.e., for inexperienced users), this 
invalidates it as a deployment option. 

2) Integrity 
DNSSEC is supported by all three applications and only 

requires the upstream servers to support it, too. Unbound 
comes with already enabled DNSSEC validation, Pi-hole as 
well as AdGuard can be configured over the web interface to 
enforce it, too. 

3) Availability 
Even flooding the servers with large amount of DNS 

queries did not stop service operations (See Section C below). 
All servers have the same hardware specifications (2 Core 
CPU @ 2.3 GHz, 1 GB RAM). Resource exhaustion is very 
unlikely even at these levels when used in a local network. An 
attacker that can send packets to the local blocking resolver 
might try a DoS attack, the AdGuard software was observed 
to detect a host that sends large bursts of queries and slows its 
answering process – Pi-hole and Unbound do not do the same. 
Availability could be improved further by hosting two 
identical resolvers or even more to introduce redundancy and 
enable load distribution or load balancing. 

C. Threat Evaluation 

Validating incoming DNS answers from the upstream 
server via DNSSEC allows for reliable DNS cache poisoning 
protection [21]. For Domains that do not support DNSSEC, 
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the local server must rely on the answer from the upstream 
server and that it took measures to prevent DNS cache 
poisoning on their end. The communication channel between 
the local resolver and the upstream resolver can be protected 
by DoH or DoT. 

Flooding attacks were conducted against all three 
applications by a single host with the following different 
attack types:  

1) Sending out bursts of DNS queries to random domains 
that are known to not exist (NXDOMAIN Attack) 

This was carried out against the default DNS endpoint 
UDP port 53 and DoH Port 443. Only AdGuard on Port 53 
seems to have a mitigation technique in place: It considerably 
slows down the answering after the first few requests. The 
other two applications did not show this behaviour. 

2) Sending out bursts of DNS queries to random 
subdomains that are known to not exists (Random Subdomain 
Attack) 

This showed the same results as with the NXDOMAIN 
attack – only AdGuard with DNS over UDP slows the 
answering process down. 

3) SYN TCP Flood to Port 53 and Port 443 
The SYN segments were alle crafted the same (i.e., 

payload, sequence number). All applications performed 
similarly, only answering the first SYN and ignoring the 
following SYNs from the same host. 

4) UDP Flood to Port 53 
The same behaviour of the application like with SYN 

Floods shows on UDP Floods: Only the first datagram gets 
answered by all resolvers. 

5) DNS Rebinding Check 
AdGuard did not filter out DNS answers that contained 

private IPs but did set the TTL higher than it was received in 
the original answer (From 60 seconds to 300). Pi-hole did 
neither, it forwarded the original DNS answer with low TTL 
containing the RFC 1918 address. Unbound increased the 
TTL the same way as AdGuard and did also not remove the 
RFC 1918 address. Unbound allows for configuration of the 
minimum TTL via the configuration option cache-min-ttl and 
allows for direct mitigation of DNS rebinding via the private-
address option. 

V. DISCUSSION AND CONLUSION 

The standard DNS provides no security in the sense of 
confidentiality and integrity. It can not protect itself against 
attacks like MITM. There are extensions to the DNS protocol 
that aim to improve security:  

DNSSEC provides integrity protection to the DNS 
protocol by introducing transaction level data and data origin 
authentication. It also provides a mechanism for denial of 
existence. DNSSEC allows to detect name-based 
authentication attacks but cannot protect against DoS attacks 
nor can it provide confidentiality. Also not further discussed 
here are the following points: Risk of compromise of 
DNSSEC keys, Zone enumeration and key rollover problems.   

Confidentiality is provided by both DoT and DoH, which 
are ways to eliminate eavesdropping and tampering with data 
in transit. Combining one of these protocols with DNSSEC 
allows for confidentiality and integrity protected transfer of 
DNS data. This can be further combined, like described in this 

paper, by using these algorithms with blocking or filtering 
DNS resolvers: 

Blocking DNS resolvers like Pi-hole and AdGuard 
provide means of blocking advertisements and malicious 
content to users by altering DNS answers or stopping DNS 
resolution for affected domains/names. Pi-hole cannot be 
directly configured to use DoH or DoT, neither upstream nor 
for clients. DNSSEC is directly supported. AdGuard supports 
DNSSEC, DoH and DoT directly. Comparing to the 
commonly used Unbound DNS resolver, which also 
supported these protocols directly, Pi-hole lacked 
functionality and therefore also security features. Integrating 
these features should be a primary task for the developers. 

API support for implementation of a dynamic DNS 
blocking or filtering service was best supported by Unbound, 
where it is possible to directly check and alter DNS records 
via the API. AdGuard only allows for adding and removing 
names from the blocking list, after they already were 
requested at least once. Pi-hole does not provide an API, 
which renders it unusable for dynamic DNS filtering, it only 
supports static filter lists. API support should be expanded. 

A. Integration and Deployment Into the Existing DNS 
Structure 

Problematic is the integration into the existing DNS 
infrastructure. The local resolver might either have an 
upstream resolver that it trusts – like configured for this paper 
– or it might recursively lookup the requested domain name 
itself for the client. From a security standpoint, it might be 
wanted to let itself recursively ask the responsible 
nameservers for the correct resource record instead of trusting 
an upstream provider (which, for example, is configurable for 
Unbound with IP-network-based access-control). Doing this 
in a confidentiality protected manner is currently not 
possible. Neither DoT nor DoH provide means of usage for 
direct requests to authoritative nameservers. There is no 
mechanism for direct secure requests from a local recursive 
resolver to nameservers (with a fallback to insecure 
communication). DNSSEC can be used for recursive name 
resolution and this is configured to be enabled by default for 
Unbound.  
DoT and DoH both can be used for upstream communication 
protection to an internet resolver (like Cloudflare, Quad9 or 
Google Public DNS) – but cannot be used for direct 
communication to nameservers – DoT provides an 
opportunistic scheme to test servers if the support it – DoH 
forbids this approach. There is no way for servers to indicate 
that they support a privacy enabled protocol like DoT or DoH. 
This also is a problem on client-side for the local resolver: 
Clients must be explicitly configured to use the secure 
communication channel; they cannot switch by themselves. 
For both problems a secure negotiation mechanism, that 
allows the client/resolver to detect, trust and automatically use 
a secure communication channel to respective upstream 
servers, is desirable. Browser manufacturers have begun to 
implement their own servers into browsers to secure at least 
this part of DNS communication by default [20]:  

B. Regarding Confidentiality enabled Client Software 

Modern browsers have started to make DNS requests via 
DoH independently of the operating system itself [20] [43]. 
This obviously enables the applications to circumvent the 
blocking and filtering of domains effectively. To solve this 
problem, there are different approaches:  
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Chromium for example will only use DoH, when the DNS 
provider, that is configured on the host, is contained in a 
curated list [44] of DNS providers, that also provide DoH and 
will only then upgrade to DoH from using the systems 
standard DNS feature. When using a local Pi-hole or AdGuard 
server, Chromium does not upgrade to DoH as the local server 
is not in the auto-upgrade list. 

Mozilla Firefox uses a so-called canary domain: use-
application-dns.net. If a local resolver like Pi-hole or AdGuard 
returns a negative DNS response (NXDOMAIN) without an 
error, Firefox detects the network as unsuitable for it’s internal 
DoH protocol stack and will return to using the operating 
systems DNS servers. But Mozilla states: “The use of this 
domain is specified by Mozilla, as a limited-time measure 
until a method for signaling the presence of DNS-based 
content filtering is defined and adopted by an Internet 
standards body” [45]. Both Pi-hole and AdGuard answer with 
NXDOMAIN to signal that they implement additional 
features and cannot be replaced by the browsers own DNS 
provider. 

C. Affecting Integrity With DNS Blocking 

DNS blocking or filtering cannot be detected for non-
integrity protected domain names but can be detected by a 
client if a domain name is integrity protected by DNSSEC and 
DNSSEC is correctly deployed to the domain. This can be 
done by the client if it requests DS records from the root to the 
requested domain name. This way the client can verify if a 
domain should be signed. If a blocking resolver blocks a DNS 
resource record, it also needs to block the corresponding 
RRSIG record. The client can detect if a domain should be 
signed, but the server answers with a wrongly non-signed 
record, or alternatively, answers with an NXDOMAIN, which 
in turn would have to be a NSEC or NSEC3 record in response 
(which by design would be signed). Even if the local resolver 
blocks DS records and all signing data for the parent zones, 
most clients have the DNS root key on their local system and 
know that the root zone is signed. There is a way for a local 
resolver to correctly sign the wrong answers generated by 
blocking: The clients need a DNSSEC key signing key they 
have in their trust store that is used by the local filtering 
resolver for signing altered answers. As DNSSEC is gradually 
rolled out further to the DNS, this might be needed in the 
future, if clients enforce DNSSEC validation. 

D. Security and Risk Assessment 

Most of the threats against DNS that are described in 
RFC3833 [21] can be prevented effectively by using 
DNSSEC combined with a transport security protocol like 
DoT or DoH. DNS blocking is nothing else than what is 
described in the RFC under Chapter 2.4 as “Betrayal By 
Trusted Server”. Following this reasoning, DNS blocking 
might itself be seen as a security risk, especially when used 
for blocking names that would be perfectly valid and legal 
requests. 

a) Common Attacks 
Regarding common attacks like those described in before 

in Chapter II.B, combining at least the named mechanisms 
successfully prevents the following:  

1. DNS Cache Poisoning is impossible for DNSSEC 
signed domain names when the local resolver 
enforces DNSSEC validation. 

2. Man-in-the-Middle or Packet Interception Attacks 
cannot be performed on a confidentiality protected 
secure communication channel like provided by DoT 
or DoH (assuming there is a certificate pinning 
algorithm in use). 

It does not protect against Denial-of-Service attacks like 
flooding attacks or Phantom Domain attacks. 

b) Bigger Attack Surface/Points of Failures 
The system also introduces new problems, and some 

Problems of standard DNS resolvers remain: 

1. DNSSEC is complex to implement, and most 
domains do not support it yet [46]. For unprotected 
domains, attacks that target integrity, like Name 
Chaining are still possible. 

2. Response packet size of DNSSEC signed responses is 
increased, this could be used in traffic amplification 
attacks. 

3. DNSSEC validation increases the workload for the 
local resolver, this can be leveraged for Denial-of- 
Service. 

4. DoT and DoH require each an additional open TCP 
socket for communication on the local resolver for 
clients. This increases the attack surface for common 
attacks like Denial-of-Service attacks, overflow 
attacks or bypass attacks. 

5. Especially for Pi-hole, that does not support DoT or 
DoH natively, additional software must be used to add 
these features, which increases the attack surface even 
more. 
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VII. APPENDIX 

A. Software 

TABLE II.  USED SOFTWARE VERSIONS AND REPOSITORIES 

Software 
Software Information 

Version Repository Remark 

Pi-hole v5.3.1 

official GitHub-
Repository: 

https://github.com/pi-
hole/pi-hole/releases 

 

Unbound 1.12.0-1 

official GitHub-
Repository: 

https://github.com/NL
netLabs/ 

unbound/releases 

 

AdGuard 
Home 

v0.106.3 

official GitHub-
Repository: 

https://github.com/ 
AdguardTeam/AdGuar

dHome/ 
releases 

 

knot-
dnsutils 

3.1.0 

official Linux-
Repository: deb 

http://ppa.launchpad.n
et/cz.nic-labs/knot-

dns-latest/ubuntu focal 
main 

Used for DoT 
and DoH 

requests to 
servers 

dnspython 
2.1.0 for 
Python 
3.8 

PyPI: 
https://pypi.org/project

/dnspython/ 

Used for 
NXDOMAIN 

and sub-domain 
attack tests 

Scapy 
2.4.5 for 
Python 
3.8 

PyPI: 
https://pypi.org/project

/scapy/ 

Used for 
flooding attack 

tests 

Fig. 2. Listing of all software with the used version number (Older 
versions will most likely lack features) 

B. Timings Data 

Timing tests were conducted on a small scale on the 
three applications regarding answer timings on flooding 
attacks, NXDOMAIN and subdomain attacks. Results can 
be found here: https://www.kalytta.net/th-assets/results-
timings.CSV. These are only for comparison and not clear 
enough to draw conclusions from it. Interestingly, AdGuard 
performed poorly on insecure requests. This was not further 
investigated.   

C. Scripts 

The scripts used for the tests can be found here: 
https://www.kalytta.net/th-assets/scripts/ 

D. Configuration Files 

The configuration files for Unbound can be found here: 
https://www.kalytta.net/th-assets/configs/ 


