
©2021 TH Köln 1

DLA Project Report - “Music Synthesis from MIDI
with RNN/LSTM”

Henrik Erpenbach
Institut für Nachrichtentechnik
Technische Hochschule Köln

Cologne, Germany
Henrik.Erpenbach@smail.th-koeln.de

Philipp Kalytta
Institut für Nachrichtentechnik
Technische Hochschule Köln

Cologne, Germany
Philipp.Kalytta@smail.th-koeln.de

Bastian Schetter
Institut für Nachrichtentechnik
Technische Hochschule Köln

Cologne, Germany
Bastian.Schetter@smail.th-koeln.de

Victor Kerscht
Institut für Nachrichtentechnik
Technische Hochschule Köln

Cologne, Germany
Victor.Kerscht@smail.th-koeln.de

Abstract—This paper gives an overview on music synthesis
based on recurrent neural networks (RNNs), especially Long-
Short-Term-Memory based RNNs, that will be trained with
data extracted from MIDI files and can generate MIDI data
on the output side.

Keywords—music generation, LSTM, recurrent neural
networks, MIDI

I. INTRODUCTION
This student project explores the use of machine

learning in the generation of music. Neural networks will be
used to learn from real composed music. These same
networks can be used to write their own music after a period
of training. The project was a group effort of four students
that worked together to discuss and implement the contents
of this report. This report discusses the way the project was
assembled, from the tools that were used to the way data is
converted from an industry standard to a more training
friendly format. The different designs and iterations of the
network itself will be described. Finally, the results and
conclusion that stem from these experiments will be
presented.

II. OBJECTIVE
The objective of our project is to generate music in the

form of MIDI files using neural networks. To achieve this
objective, we want to train a Recurrent Neural Network
(RNN) with large quantities of MIDI files. The result should
be a playable MIDI file that is pleasant to listen to by a
human and that should reflect the style of music that was fed
into the network. Directly using notes in a file instead of
transcribing the music from a sound file helps training the
network for correct dependencies on music notes. If
successfully trained with LSTMs, checking other RNN
variants (GRUs or bidirectional LSTMs) and comparing
their performance to LSTM-based neural networks might be
additional work in this project. We might also consider
neural network types that were not tested for music
generation in other research, like multiplicative LSTM. The
project also includes creating a robust way to convert MIDI
data to a format that can be ingested by the neural network,
as well as the conversion back to MIDI from the predictions
the neural network creates.

III. TECHNICAL OUTLINE

A. Tensorflow
TensorFlow is an open-source framework for machine

learning (ML) applications based on the Python
programming language. TensorFlow originated from one of
Googles internal projects and provides a stable Python API
that supports training ML models using the GPU as an
accelerator [1].

B. MIDI
The MIDI format or “Musical Instrument Digital

Interface” (file ending .mid) is an industry standard that is
in principle very similar to sheet music [2]. The information
is encoded as pitches that should be played and the
instrument that should play them. The real sound is not
included in a MIDI file, the device reading the file must
access separate tone samples to generate an audio signal. In
the case of this project, MIDI files are a good match,
because the notes and timestamps are already included. This
allows the neural network to work with precise data, that
exactly tells it which note is played when.

MIDI is a message-based format, meaning information
is saved as messages for single notes or chords which are
sent at a specific point in time.

C. Music21
Music21 is a set of tools for Python that allows for

computer-aided music conversion, analysis, and generation
[3]. Music in Music21 consists of music21.note objects that
are organized in music21.streams. Streams are hierarchical
objects that either contain notes (or other control objects like
metronome marks) or can themselves contain other stream
objects: i.e., a score (which is a stream) can contain different
parts (which are also streams) which contain measures (also
streams), and these contain notes [4]. We will traverse this
hierarchy when parsing music from MIDI files, as MIDI
also has the hierarchical structure, but based on so called
tracks. When converting back from the generated data to
MIDI files, we will need to recreate the hierarchical
structure, at least so far that the MIDI contains the notes in
a stream object. Other limits apply regarding easier
conversion (see “Conversion Back to Midi”).

D. Neural Networks
 A neural network is a network of neurons that can be

used for different tasks such as regression analysis,
classification of patterns and objects or data processing.
Plain neural networks cannot detect sequential or timeseries

©2021 TH Köln 2

features. The problem of music generation is a multi-label
classification task based on timeseries. Keys/notes can be
pressed at once, most of them are not pressed at the same
time. One important parameter, that also needs to be
considered but is not a classification problem is the
metronome, it is the one other important value of music
regarding how good it sounds subjectively. The velocity of
notes has shown to be less important in our testing [5]. The
metronome does not need to be classified, rather it is a
numerical prediction.

E. RNN
RNNs or Recurrent Neural Networks are a type of neural

networks that specialize in recognizing and extending
temporal sequences. Examples of such sequences are words
in a text, movement of an object in a movie or the notes in a
piece of music. To achieve this RNNs use data from a
previous slice of data in a sequence as an additional input to
the current slice, essentially creating a memory.

In our project we can use RNNs to train and then
generate MIDI data that we can save to a file that is then
playable by a computer.

F. Long Short-Term Memory
Based on the idea of an RNN using previous data slices

for a better prediction, LSTMs are specialized on learning
long-term dependencies. They consist of three different
sigmoid gates to update the internal cell state. The input gate
is responsible to decide what new information shall be
stored in the cell state. The forget gate is used to forget
already remembered information that is not necessary to
keep while the output gate provides a filtered version of the
cell state combined with an input as the output of that cell.

Regarding this project, LSTMs were chosen as the RNN
architecture to be able to recognize dependencies between
musical notes. Music consists of sequences of notes that can
be played consecutively as well as chords when played at
the same time. These sequences and chords form a melody
that sounds harmonious to the human ear. A normal neural
network is basically unable to decide whether a sequence of
notes sounds harmonious or not.

Instead, based on a set of pieces of music as input data,
patterns between notes shall be recognized. Each LSTM cell
decides whether a note fits in the context of the previous

played notes. In the next step, these patterns should then be
reproduced by the network to create a composition by itself.

G. Gated Recurrent Unit
GRUs or Gated Recurrent Units are a type of RNN cell

that introduces a gate to the RNN scheme. This gate, which
is a simple mathematical operation attached to additional
weights. The gate gives the cell the ability to decide whether
the data from previous cells should be passed to the next
cell. As such it introduces the ability to ‘forget’ to the
network [6].

H. Data Sets
Since the RNN needs a large quantity of MIDI files to

train, a lot of similarly formed MIDI files are needed. The
MIDI format allows for multiple different types of saving
music data. Removing metadata and bringing every MIDI
file in the same format (same type and same temporal space)
is important to correctly train the network with the data.
Ideally, the neural network will be able to produce MIDI
data that can directly be processed by a music application to
play the generated sounds.

IV. DATA
As mentioned above, MIDI can be compared to a sheet

of music. Likewise, the music can be played by any
instrument. Since it is basically possible to strike several
notes on a piano at the same time, the focus in this project
was set on piano pieces from classical music.

For this purpose, a collection of pieces of music by
various famous composers could be found online, which
was used to train the neural network [7].

A. Data From Midi
The MIDI file format is used because the format is, in

essence, much easier to work with. Most audio file formats
save the actual sound signal in some form. This way, details
like specific instrumental sounds, effects, intonation, and
volume are preserved. MIDI can save things like the
intensity and tempo of a played sound, but further details are
lost. This is because, as mentioned earlier, a MIDI-file
merely consists of messages (information on which
instrument to play at what pitch, at which point in time) –
the actual sound itself is synthesised by the device
interpreting the messages using external instrument sample
data. In this way, MIDI is more like a sheet of music instead
of the music itself.

 Figure 2: “Structure of a LSTM (Long Short-term Memory) cell.
Orange boxes are activation functions (like sigmoid and tanh),

yellow circles are pointwise operations. A linear transformation
is used when two arrows merge. When one arrow splits, this is a

copy operation” [11] [12].

Figure 1: Simple RNN Cell [6].

©2021 TH Köln 3

In the case of training a neural network actual sounds are
a more difficult dataset to work with. For example, an audio-
cd works with a sample rate of 44.1 kHz. Considering the
Nyquist-Theorem this leads to a possible signal spectrum
between nearly zero and about 22kHz, which would need to
be analysed for at least probably half as short as a 32nd note
in the tempo of the music. This would amount in a massive
amount of work analysing and parsing the data before it
could be used to train a neuronal network. Considering that
this project is limited in the amount of time for the research,
this is unfeasible.

Using MIDI instead, we can limit the amount of input
neurons for a single instrument to the different states a note
can take times the amount of 88 possible notes.

Additionally, MIDI files are widely available on the
internet. Some collections of music are even free to
download.

B. Internal Data Format
Since MIDI is a message-based format with different

standards, it is not that useful to feed into a neural network
directly. Instead, we used an internal format to hold the
input data. Our goal was to create a discrete-time
representation of individual notes quantised over a finite
range, namely the 88 keys of a standard piano. To achieve
this, we structured the data like a so-called “piano roll”, a
method of music storage used in player-pianos and barrel
organs since the 19th century. A piano roll is a long roll of
paper with slotted perforations that moves over a read head
while the song is played. Each slot represents a note, the
lateral position of the slot encodes which note to play, while
the length of the slot determines how long it should play.

Analogously, our input data is represented in a two-
dimensional array-form, where each row contains the
current state of the 88 keys during a single point in time. We
defined three possible note-states, “silent”, “start” and
“hold”. This is necessary to discern multiple notes played
back-to-back from a single, continuous note (compare
attacking a piano key four times in row to attacking it once
and letting the string vibrate freely).

C. Conversion From MIDI
To generate the data, we use the aforementioned Python

library ‘Music21’. Music21 allows parsing of MIDI-files
and other music storage formats by quantising the MIDI-
messages into a stream of note-objects as they would appear
on sheet music. It uses the pitch of the message to determine
the note on a scale from A0 to C8 including accidentals (i.e.,
sharps and flats) and the offset between messages to
estimate the bar and tempo in beats per minute (bpm)
followed by the duration of the tone (half, eighth, quarter
etc.).

The values are parsed for each track of the MIDI
(different tracks can correspond to different instruments,
different hands, voices, etc.) to generate the array. Because
classical compositions often contain changes in tempo, the
current tempo in each time-step is also added to each row.
The step-size was set to a 16th note, meaning that 32nd
notes and triplets are rounded to the nearest 16th, which
improved the size-efficiency of the input arrays, without
losing much musical information. Note that the information
about which instrument a note is played by is discarded; in
its current form the data structure is only suitable for solo

pieces. The result is a systematic data structure that retains
pitch and duration while still supporting polyphony
(multiple notes played at once).

D. Conversion Back to MIDI
In reverse, we can convert generated data from the

neuronal network back into MIDI. This is needed to listen
to the generated music.

The algorithm works concurrently with one thread for
each possible note using the python thread pool executor.
Every thread works through the 16th parts, if a note is
attacked, the algorithm will read how many ‘hold’s follow
afterwards to determine how long the note is.

After that, the node will be converted into a string
consisting of the note name and the octave. The arrays for
the single notes are than converted into music21 streams and
merged into a single stream. The resulting MIDI-file, when
viewed in something like the midi visualization software
‘MuseScore’, will look as if 88 pianos are playing together,
with every piano only ever playing a single distinct tone.

The use of multithreading reduces the time needed for
the conversion if it is run on a CPU that supports
simultaneous multithreading on a single core. However,
multithreading will only run on a single physical core of the
CPU. To use more physical cores, the use of
multiprocessing is required, which splits the execution into
multiple child processes, which has the potential to divide
the time needed for conversion by the number of processor
cores used.

Sadly, the use of multiprocessing will lead to errors in
Music21 when the streams for the single tones are merged.
Because of this, multiprocessing is not used in this project.

V. NEURAL NETWORK MODEL
As the neural network will work on timeseries data -

notes in a score are dependent on a time basis as well as
other pressed notes at the same time, the main part of our
model will be one or several RNN-type layers.

Figure 3: Base Sequential Model of the neural
network used in this paper for the prediction of

new piano music.

©2021 TH Köln 4

A. Base Model
The neural network model is a sequential model,

meaning the different layers are wired sequentially after
each other.

The first layer is an LSTM layer with 64 internal layers.
The input of the layer is comprised of 177 neurons. This
number results from the 88 possible notes that can take 3
states. The silence state is ignored because it seems to have
negative influence on the output quality. Therefore the 88
notes are multiplicated by 2 to account for starting and
holding a note. An additional neuron is added to pass the
tempo. The LSTM layer is added to analyse the 16th samples
in correlation to the past. Following the LSTM layer are two
dense layers with the same 177 input and output neurons.
The second dense layer functions as the output layer, from
where the prediction can be read back into the internal
format.

VI. METHODS
As mentioned, the data consists of two important parts:

The actual keys pressed at a given time and the tempo of
that time. The former is a categorical probability problem:
The model must predict probabilities for a keypress for the
given time. The latter is a real numerical problem: There is
always a tempo in the score, it might change by a numerical
value. This imposes a problem regarding Tensorflow using
Keras: The simple sequential model can only be used with
one loss function, which can therefore only optimise
towards one of the two named problems. Either reducing
loss on the probability of the keypresses or reducing loss on
the numerical values of the tempo. This will further be
discussed in the following section A.

A. Solution Approach
The base model, as stated, consists of one large LSTM

layer with 61952 parameters, which is followed by two
dense layers with 177 neurons each, which results in a total
of 104,963 trainable parameters. The model performed
slightly better with two dense layers, about 0.1 % higher
accuracy than with only one. Deeper LSTMs, however, did
not further increase the accuracy. This is mainly because the
loss correction is flawed as mentioned above.

1) RNN Split Model
The issue of the two different problems that arise with

the music data can be circumvented with a split model.

Tensorflow and Keras allow to do this with the Functional
API. The Functional API is more flexible regarding the
design of the neural network, particularly, it allows for
multiple input and outputs. This is necessary as we can
define a different loss function on each of the output vectors.
This enables us to use a cross entropy loss function for the
pressed keys output and mean squared error for the
numerical loss on the metronome (or tempo).

2) Activation Functions
The LSTM layer uses tanh as the activation function, as

this is the only activation function for LSTMs that allows
the use of cuDNN (Training on Nvidia GPUs) [8]. The first
dense layer uses the default linear activation function. The
last dense layer shows the best results with “softplus”
activation. ReLU and sigmoid will yield slightly worse
results.

3) Loss Functions
We chose mean-squared-error for the loss function for

the non-split model over the full output vector. Using a cross
entropy loss would be beneficial for the probability-
dependent outputs of the pressed keys but would completely
invalidate the output for the tempo. To preserve meaningful
output, mean squared error will result in good output for the
tempo value, and will try to estimate a numerical value for
the pressed keys: This will result in very small numbers less
that one for the key outputs (Info: those would go in as either
0 or 1) which cannot be directly interpreted as probabilities.
Those output predictions must be interpreted by a decision
algorithm to evaluate if a keypress needs to be put into the
output MIDI file.

4) Optimizers
When trying to achieve better results optimizers can be

used to dynamically adjust the
weights on the nodes. The first
versions of the LSTM used Adam, a
stochastic gradient descent method
as an optimizer that is a
combination of RMSprop and
momentum. Therefore, it includes
the exponentially decaying average
of past squared gradients as well as
past non-squared gradients to
compute an adaptive learning rate.

However, Liu and
Ramakrishnan [II] stated RProp
provides better results since it only
uses the sign of the derivative to
adjust the learning rate and does not
take the size of the partial
derivatives into account. First tests

of the LSTM confirmed that better result could be achieved.
However, since RProp has difficulties to work with large
datasets and its similarities to it RMSProp has been set as
the optimizer of choice.

B. Alternative Approaches
GRU cells (Gated Recurrent Unit) can be used as an

alternative to LSTM and were evaluated in comparison to
the LSTM by replacing the LSTM layer with a GRU layer
with the same number of units. This would reduce the
training time by about 10-15%, as it also reduced parameter
size to 89,667. But it did not yield better results in terms of
the generated music.

Figure 4: RNN Split Model using the Keras Functional API

©2021 TH Köln 5

VII. EXPERIMENTS

A. Musical Rests
First experiments showed an interesting behaviour of the

RNN regarding musical rests.

In many classical compositions, the intro begins with a
rest that can last several seconds until the first note is played.
The same applies to the outro, which may contain multiple
rests after the last musical note played until the composition
is finished. Musical pauses are also often used during a piece

of music, which results in a high number of pauses used in
total within one composition.

Because of this high number, the neural network
interpreted rests as something positive. Also, because the
loss decreased when the RNN played rests, the first outputs
of the network only included breaks.

To avoid this behaviour in the first step the rests in the
beginning and at the end of a composition have been
removed from the input data.

B. Hyperparameter Manipulation
The Hyperparameters we chose to change throughout

different runs were the following: Learning rate, epochs,
and batch size, to compare them with different settings. Best
results were achieved with 20 to 25 epochs with a learning
rate of 0.002. This was determined with a batch size of 64
and a deepness of 64 for the LSTM layer. Training with
more epochs would slightly reduce the loss on the training
data, but nearly no change on the validation set. This can
also be seen in Figure 5. Training with more than 100
epochs will then result in a quick spike in categorical cross
entropy loss, after dropping rapidly to near zero categorical
cross entropy loss. This indicated that the network learned
to optimize against either zero or one for the key presses –
which it did: after 150 epochs, the prediction output would
only contain zeroes. We then settled with the conservative
value of 25 epochs to further test on batch size. Batch size
did not at all influence the output of the neural network,
mini-batches performed in the same 0.001 loss interval
around 0.015 as large batches (See Figure 6).

Figure 5: Output from training on a Bach Score, this shows the
problem with too many rests between notes.

Figure 6: Training and validation categorical cross entropy, mean absolute error and loss for training with batch size 64 and LSTM layer
size 64 for 200 epochs on the base model.

©2021 TH Köln 6

C. Regarding the Architecture
(Split/Non-Split)
All the shown experiments were

done using the base model. We were not
able to work with the split model
architecture from the Keras Functional
API due to restrictions with the
Tensorflow Implementation and the way
our dataset was formed. We would need
to completely rework the data ingestion
code to be able to train the split model
[9]. This was not doable in the given
amount of time. As our data is
asymmetrical – consisting of only one
value for the tempo and 176 values for
the keys per timestamp. This would
make NumPy arrays inappropriate for
the input and output, as we would have
175 empty values for one of the input
vectors, producing unexpected input and
output. Also batching these inputs
correctly needs to be done as well as
creating tensors for each input for the
training and validation data. Doing these
steps on each dataset itself would result
in Tensorflow failing on running the first
epoch. Ingesting the whole dataset at
once would result in Tensorflow not being able to create
Tensors from the arrays. Also, this made using timeseries
data generators unusable as for generating the data for the
whole (very large) dataset.

D. Data Generator for Input Data
Training on a single composer was possible with a

standard 16 Gigabytes of system memory. Ingesting the
whole music dataset at once and windowing the data for the
model training results in requiring over 200 Gigabytes of
system memory. This is not feasible for training, but we
wanted to have to option to train on the whole dataset. This
required us to use data generators. Tensorflow Keras
provides the TimeseriesGenerator class for working with
timeseries data, which fits our music data. In Tensorflow
2.0, directly calling model.fit() with generators is possible
(instead of using fit_generator()) which further reduces the
effort for training with the whole dataset. With a Nvidia
RTX 2070, training on GPU was done with a batch size of
256, which took about 5 minutes per epoch to train with the
whole dataset. Loss remained about the same 0.013 that was
achieved with single composers. The predicted music
subjectively has the same complexity and errors like
training with a single composer.

VIII. RESULTS

A. Music Generation
Regarding the goal of the generation of music, there are

promising results. The resulting pieces of music tend to have
the problem of long pauses and few variations of notes
played, depending on the threshold used to analyse the
prediction. In other cases, most notes will be played in
perpetual 16th all the time.

Nevertheless, in some of the generated pieces, accords
are played in succession which will sound good. The results
of course do not compare with the complexity of the music
fed into the network. The GRU network compared to the

LSTM performed better regarding an overall theme for the
score, but used significantly more notes, which results in an
oversaturation effect for the listener. The GRU overall has
the same problem: The network cannot be perfectly
optimized regarding the loss, as it the input and output is
treated in the wrong way (only one input/output vector).
This effect seems to prevent the network to train any further
after a given point.

IX. CONCLUSION
We can conclude that even though we did get music with

some accords played, out network would need to be much
larger and more complex to learn to imitate a classic
composer. The corresponding time and resources the
network would need were too much for the scope of this
project.

In general, our dataset would need to be restructured.
Most of the problems came from two facts. First, the
metronome was included in the input vector. This input had
a different ‘encoding’ from the note neurons and was never
zero. We theorize that this adds an adverse effect on the
quality of the prediction. One possible solution to this
problem would be the introduction of a second network that
calculates only the tempo for the slices, whereas the first
network would be devoid of any tempo inputs. If
Tensorflow would be able to work with multiple input
generators for timeseries data, this would also enable the
split RNN model described before to work with the given
data.

The second severe problem was the number of zeroes
fed into the network. As discussed, this problem arose from
the fact that a single note in a piece of music will be silent
more often than it being played. As a result, the training data
leads the neuronal network to believe that zeroes are the best
possible output with the least amount of error generated
during training. This might be mitigated by using a bias on

 Figure 7: Training and validation categorical cross entropy, mean absolute error and loss
with batch size 128 and LSTM layer size 64 for 15 epochs on the base model. All batch sizes

performed like this one, if the other hyperparameters were not changed.

©2021 TH Köln 7

these inputs to reduce the impact, alternatively, this would
also be approached by using a different loss function.
LSTMs should be able to ignore parts of the input if they do
not contribute to the output over time.

A more complex network with a more complicated input
tensor and more complex model with more layers and
neurons is probably the solution to this problem (See the
Functional API of Tensorflow/Keras for reference [10]).

Another factor to the solution of this may be the
introduction of a dynamic interpretation of the data.
Whereas in the project a static threshold was used to decide
if a note is played or not, changing this to a more intelligent
algorithm may lead to better results in the generated music,
ideally, the network would be deep enough to be able to
decide this for itself, only outputting correct values that can
be directly translated to a working MIDI file.

X. RELATED WORKS
Other research focuses on LSTM performance for music

generation and recognition as well as gated recurrent units
(GRUs), which is a gating mechanism for recurrent neural
networks, especially LSTM.

In Liu and Ramakrishnan [II] a LSTM network has been
used to learn structure and rhythm of musical compositions.
The results were similar pieces of music composed by the
network itself. As stated in previous chapters, this project
used a similar data structure regarding the musical notes
represented as an 88-value input vector for the whole range
of a piano from A0 to C8.

Nayebi and Vitelli [III] used raw audio samples
extracted from songs encoded in WAV format as input for
a LSTM network instead of MIDI files as used in this
project. However, they discovered performance impact as
an effect of adding layers of recurrent units into the network.

In other works, there are also variants like Peephole
LSTM, hyperLSTM, feedback LSTM and the new
multiplicative LSTM (mLSTM) discussed.

[I] J. Nam, J. Ngiam, H. Lee, M. Slaney, “A
Classification-based Polyphonic Piano Transcription
Approach Using Learned Feature Representations”, Ismir,
2011

[II] I. Liu, B. Ramakrishnan, “Bach in 2014: Music
Composition with Recurrent Neural Network”, ICLR, 2014

[III] A. Nayebi, M. Vitelli, “GRUV - Algorithmic
Music Generation using Recurrent Neural Networks”,
Stanford, 2015

[IV] Z. C. Lipton, J. Berkowitz, “A Critical Review of
Recurrent Neural Networks for Sequence Learning”,
UCSD, 2015

[V] B. Krause, L. Lu, I. Murray, S. Renals,
“Multiplicative LSTM for sequence modelling”, 2016

[VI] D. Ha, A. Dai, Q. Le “HyperNetworks”, 2016

XI. REFERENCES

[1] vrv, claynerobison, caisq, Rishit-dagli, case540,
ashahba, andrewharp, gelembungsahabat,

MarkDaoust, keveman, lamberta, VersatileVishal,
martinwicke, wdirons, Nayana-ibm, jhseu,

bzhaoopenstack, benoitsteiner, 8bitmp3 und
mihaimaruseac, „tensorflow/README.md,“
TensorFlow, 16 10 2020. [Online]. Available:

https://github.com/tensorflow/tensorflow/blob/v2.4.
1/README.md. [Zugriff am 04 02 2021].

[2] MIDI Association, „The MIDI Association -
Home,“ The MIDI Association, 2021. [Online].
Available: https://www.midi.org/specifications.

[Zugriff am 04 02 2021].
[3] M. S. Cuthbert, „music21: a Toolkit for Computer-

Aided Musicology,“ [Online]. Available:
http://web.mit.edu/music21/. [Zugriff am 04 02

2021].
[4] M. S. Cuthbert, „User’s Guide, Chapter 6: Streams

(II): Hierarchies, Recursion, and Flattening —
music21 Documentation,“ 03 02 2021. [Online].

Available:
http://web.mit.edu/music21/doc/usersGuide/usersG

uide_06_stream2.html. [Zugriff am 04 02 2021].
[5] V. Kerscht, H. Erpenbach, B. Schetter und P.

Kalytta, „Sciebo MIDI Examples Download,“
[Online]. Available: https://th-

koeln.sciebo.de/s/To8uIJaHB1z0384. [Zugriff am
04 02 2021].

[6] saurabh.rathor092, „medium.com,“ 02 06 2018.
[Online]. Available:

https://medium.com/@saurabh.rathor092/simple-
rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-

control-5f33e07b1e57. [Zugriff am 10 02 2020].
[7] piano-midi.de, „piano-midi.de,“ [Online].

Available: www.piano-midi.de. [Zugriff am 11
2020].

[8] The TensorFlow Authors, Long Short-Term
Memory layer - Hochreiter 1997 -

recuurrent_v2.py:912, 1997.
[9] L. Geiger, „tf.keras multi input models don't work

when using tf.data.Dataset,“ 11 07 2018. [Online].
Available:

https://github.com/tensorflow/tensorflow/issues/206
98. [Zugriff am 01 02 2021].

[10] The TensorFlow Authors, „The Functional API,“ 20
01 2021. [Online]. Available:

https://www.tensorflow.org/guide/keras/functional.
[Zugriff am 10 02 2021].

[11] G. Chevalier, „Structure of a LSTM (Long Short-
term Memory) cell,“ 2020.

[12] G. Chevalier, „LSTM cell - Long short-term
memory,“ Wikimedia, 23 09 2020. [Online].

Available:
https://commons.wikimedia.org/wiki/File:The_LST

M_cell.png. [Zugriff am 04 02 2021].

	I. Introduction
	II. Objective
	III. Technical Outline
	A. Tensorflow
	B. MIDI
	C. Music21
	D. Neural Networks
	E. RNN
	F. Long Short-Term Memory
	G. Gated Recurrent Unit
	H. Data Sets

	IV. Data
	A. Data From Midi
	B. Internal Data Format
	C. Conversion From MIDI
	D. Conversion Back to MIDI

	V. Neural Network Model
	A. Base Model

	VI. Methods
	A. Solution Approach
	1) RNN Split Model
	2) Activation Functions
	3) Loss Functions
	4) Optimizers

	B. Alternative Approaches

	VII. Experiments
	A. Musical Rests
	B. Hyperparameter Manipulation
	C. Regarding the Architecture (Split/Non-Split)
	D. Data Generator for Input Data

	VIII. Results
	A. Music Generation

	IX. Conclusion
	X. Related Works
	XI. References

