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Abstract—This paper gives an overview on music synthesis 
based on recurrent neural networks (RNNs), especially Long-
Short-Term-Memory based RNNs, that will be trained with 
data extracted from MIDI files and can generate MIDI data 
on the output side.  
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I. INTRODUCTION 
This student project explores the use of machine 

learning in the generation of music. Neural networks will be 
used to learn from real composed music. These same 
networks can be used to write their own music after a period 
of training. The project was a group effort of four students 
that worked together to discuss and implement the contents 
of this report. This report discusses the way the project was 
assembled, from the tools that were used to the way data is 
converted from an industry standard to a more training 
friendly format. The different designs and iterations of the 
network itself will be described. Finally, the results and 
conclusion that stem from these experiments will be 
presented. 

II. OBJECTIVE 
The objective of our project is to generate music in the 

form of MIDI files using neural networks. To achieve this 
objective, we want to train a Recurrent Neural Network 
(RNN) with large quantities of MIDI files. The result should 
be a playable MIDI file that is pleasant to listen to by a 
human and that should reflect the style of music that was fed 
into the network. Directly using notes in a file instead of 
transcribing the music from a sound file helps training the 
network for correct dependencies on music notes. If 
successfully trained with LSTMs, checking other RNN 
variants (GRUs or bidirectional LSTMs) and comparing 
their performance to LSTM-based neural networks might be 
additional work in this project. We might also consider 
neural network types that were not tested for music 
generation in other research, like multiplicative LSTM. The 
project also includes creating a robust way to convert MIDI 
data to a format that can be ingested by the neural network, 
as well as the conversion back to MIDI from the predictions 
the neural network creates. 

 

III. TECHNICAL OUTLINE 

A. Tensorflow 
TensorFlow is an open-source framework for machine 

learning (ML) applications based on the Python 
programming language. TensorFlow originated from one of 
Googles internal projects and provides a stable Python API 
that supports training ML models using the GPU as an 
accelerator [1]. 

B. MIDI 
The MIDI format or “Musical Instrument Digital 

Interface” (file ending .mid) is an industry standard that is 
in principle very similar to sheet music [2]. The information 
is encoded as pitches that should be played and the 
instrument that should play them. The real sound is not 
included in a MIDI file, the device reading the file must 
access separate tone samples to generate an audio signal. In 
the case of this project, MIDI files are a good match, 
because the notes and timestamps are already included. This 
allows the neural network to work with precise data, that 
exactly tells it which note is played when. 

MIDI is a message-based format, meaning information 
is saved as messages for single notes or chords which are 
sent at a specific point in time. 

C. Music21 
Music21 is a set of tools for Python that allows for 

computer-aided music conversion, analysis, and generation 
[3]. Music in Music21 consists of music21.note objects that 
are organized in music21.streams. Streams are hierarchical 
objects that either contain notes (or other control objects like 
metronome marks) or can themselves contain other stream 
objects: i.e., a score (which is a stream) can contain different 
parts (which are also streams) which contain measures (also 
streams), and these contain notes [4]. We will traverse this 
hierarchy when parsing music from MIDI files, as MIDI 
also has the hierarchical structure, but based on so called 
tracks. When converting back from the generated data to 
MIDI files, we will need to recreate the hierarchical 
structure, at least so far that the MIDI contains the notes in 
a stream object. Other limits apply regarding easier 
conversion (see “Conversion Back to Midi”).  

D. Neural Networks 
 A neural network is a network of neurons that can be 

used for different tasks such as regression analysis, 
classification of patterns and objects or data processing. 
Plain neural networks cannot detect sequential or timeseries 
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features. The problem of music generation is a multi-label 
classification task based on timeseries. Keys/notes can be 
pressed at once, most of them are not pressed at the same 
time. One important parameter, that also needs to be 
considered but is not a classification problem is the 
metronome, it is the one other important value of music 
regarding how good it sounds subjectively. The velocity of 
notes has shown to be less important in our testing [5]. The 
metronome does not need to be classified, rather it is a 
numerical prediction. 

E. RNN 
RNNs or Recurrent Neural Networks are a type of neural 

networks that specialize in recognizing and extending 
temporal sequences. Examples of such sequences are words 
in a text, movement of an object in a movie or the notes in a 
piece of music. To achieve this RNNs use data from a 
previous slice of data in a sequence as an additional input to 
the current slice, essentially creating a memory.  

In our project we can use RNNs to train and then 
generate MIDI data that we can save to a file that is then 
playable by a computer. 

F. Long Short-Term Memory 
Based on the idea of an RNN using previous data slices 

for a better prediction, LSTMs are specialized on learning 
long-term dependencies. They consist of three different 
sigmoid gates to update the internal cell state. The input gate 
is responsible to decide what new information shall be 
stored in the cell state. The forget gate is used to forget 
already remembered information that is not necessary to 
keep while the output gate provides a filtered version of the 
cell state combined with an input as the output of that cell. 

Regarding this project, LSTMs were chosen as the RNN 
architecture to be able to recognize dependencies between 
musical notes. Music consists of sequences of notes that can 
be played consecutively as well as chords when played at 
the same time. These sequences and chords form a melody 
that sounds harmonious to the human ear. A normal neural 
network is basically unable to decide whether a sequence of 
notes sounds harmonious or not. 

Instead, based on a set of pieces of music as input data, 
patterns between notes shall be recognized. Each LSTM cell 
decides whether a note fits in the context of the previous 

played notes. In the next step, these patterns should then be 
reproduced by the network to create a composition by itself. 

G. Gated Recurrent Unit 
GRUs or Gated Recurrent Units are a type of RNN cell 

that introduces a gate to the RNN scheme. This gate, which 
is a simple mathematical operation attached to additional 
weights. The gate gives the cell the ability to decide whether 
the data from previous cells should be passed to the next 
cell. As such it introduces the ability to ‘forget’ to the 
network [6]. 

H. Data Sets 
Since the RNN needs a large quantity of MIDI files to 

train, a lot of similarly formed MIDI files are needed. The 
MIDI format allows for multiple different types of saving 
music data. Removing metadata and bringing every MIDI 
file in the same format (same type and same temporal space) 
is important to correctly train the network with the data. 
Ideally, the neural network will be able to produce MIDI 
data that can directly be processed by a music application to 
play the generated sounds. 

IV. DATA 
As mentioned above, MIDI can be compared to a sheet 

of music. Likewise, the music can be played by any 
instrument. Since it is basically possible to strike several 
notes on a piano at the same time, the focus in this project 
was set on piano pieces from classical music. 

For this purpose, a collection of pieces of music by 
various famous composers could be found online, which 
was used to train the neural network [7]. 

A. Data From Midi 
The MIDI file format is used because the format is, in 

essence, much easier to work with. Most audio file formats 
save the actual sound signal in some form. This way, details 
like specific instrumental sounds, effects, intonation, and 
volume are preserved. MIDI can save things like the 
intensity and tempo of a played sound, but further details are 
lost. This is because, as mentioned earlier, a MIDI-file 
merely consists of messages (information on which 
instrument to play at what pitch, at which point in time) – 
the actual sound itself is synthesised by the device 
interpreting the messages using external instrument sample 
data. In this way, MIDI is more like a sheet of music instead 
of the music itself. 

 Figure 2: “Structure of a LSTM (Long Short-term Memory) cell. 
Orange boxes are activation functions (like sigmoid and tanh), 

yellow circles are pointwise operations. A linear transformation 
is used when two arrows merge. When one arrow splits, this is a 

copy operation” [11] [12]. 

 

Figure 1: Simple RNN Cell [6]. 
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In the case of training a neural network actual sounds are 
a more difficult dataset to work with. For example, an audio-
cd works with a sample rate of 44.1 kHz. Considering the 
Nyquist-Theorem this leads to a possible signal spectrum 
between nearly zero and about 22kHz, which would need to 
be analysed for at least probably half as short as a 32nd note 
in the tempo of the music. This would amount in a massive 
amount of work analysing and parsing the data before it 
could be used to train a neuronal network. Considering that 
this project is limited in the amount of time for the research, 
this is unfeasible.  

Using MIDI instead, we can limit the amount of input 
neurons for a single instrument to the different states a note 
can take times the amount of 88 possible notes. 

Additionally, MIDI files are widely available on the 
internet. Some collections of music are even free to 
download. 

B. Internal Data Format 
Since MIDI is a message-based format with different 

standards, it is not that useful to feed into a neural network 
directly. Instead, we used an internal format to hold the 
input data. Our goal was to create a discrete-time 
representation of individual notes quantised over a finite 
range, namely the 88 keys of a standard piano. To achieve 
this, we structured the data like a so-called “piano roll”, a 
method of music storage used in player-pianos and barrel 
organs since the 19th century. A piano roll is a long roll of 
paper with slotted perforations that moves over a read head 
while the song is played. Each slot represents a note, the 
lateral position of the slot encodes which note to play, while 
the length of the slot determines how long it should play. 

Analogously, our input data is represented in a two-
dimensional array-form, where each row contains the 
current state of the 88 keys during a single point in time. We 
defined three possible note-states, “silent”, “start” and 
“hold”. This is necessary to discern multiple notes played 
back-to-back from a single, continuous note (compare 
attacking a piano key four times in row to attacking it once 
and letting the string vibrate freely). 

C. Conversion From MIDI 
To generate the data, we use the aforementioned Python 

library ‘Music21’. Music21 allows parsing of MIDI-files 
and other music storage formats by quantising the MIDI-
messages into a stream of note-objects as they would appear 
on sheet music. It uses the pitch of the message to determine 
the note on a scale from A0 to C8 including accidentals (i.e., 
sharps and flats) and the offset between messages to 
estimate the bar and tempo in beats per minute (bpm) 
followed by the duration of the tone (half, eighth, quarter 
etc.).  

The values are parsed for each track of the MIDI 
(different tracks can correspond to different instruments, 
different hands, voices, etc.) to generate the array. Because 
classical compositions often contain changes in tempo, the 
current tempo in each time-step is also added to each row. 
The step-size was set to a 16th note, meaning that 32nd 
notes and triplets are rounded to the nearest 16th, which 
improved the size-efficiency of the input arrays, without 
losing much musical information. Note that the information 
about which instrument a note is played by is discarded; in 
its current form the data structure is only suitable for solo 

pieces. The result is a systematic data structure that retains 
pitch and duration while still supporting polyphony 
(multiple notes played at once). 

D. Conversion Back to MIDI 
In reverse, we can convert generated data from the 

neuronal network back into MIDI. This is needed to listen 
to the generated music.  

The algorithm works concurrently with one thread for 
each possible note using the python thread pool executor. 
Every thread works through the 16th parts, if a note is 
attacked, the algorithm will read how many ‘hold’s follow 
afterwards to determine how long the note is. 

After that, the node will be converted into a string 
consisting of the note name and the octave. The arrays for 
the single notes are than converted into music21 streams and 
merged into a single stream. The resulting MIDI-file, when 
viewed in something like the midi visualization software 
‘MuseScore’, will look as if 88 pianos are playing together, 
with every piano only ever playing a single distinct tone. 

The use of multithreading reduces the time needed for 
the conversion if it is run on a CPU that supports 
simultaneous multithreading on a single core. However, 
multithreading will only run on a single physical core of the 
CPU. To use more physical cores, the use of 
multiprocessing is required, which splits the execution into 
multiple child processes, which has the potential to divide 
the time needed for conversion by the number of processor 
cores used.  

Sadly, the use of multiprocessing will lead to errors in 
Music21 when the streams for the single tones are merged. 
Because of this, multiprocessing is not used in this project. 

 

V. NEURAL NETWORK MODEL 
As the neural network will work on timeseries data - 

notes in a score are dependent on a time basis as well as 
other pressed notes at the same time, the main part of our 
model will be one or several RNN-type layers.  

 

Figure 3: Base Sequential Model of the neural 
network used in this paper for the prediction of 

new piano music. 
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A. Base Model 
The neural network model is a sequential model, 

meaning the different layers are wired sequentially after 
each other. 

The first layer is an LSTM layer with 64 internal layers. 
The input of the layer is comprised of 177 neurons. This 
number results from the 88 possible notes that can take 3 
states. The silence state is ignored because it seems to have 
negative influence on the output quality. Therefore the 88 
notes are multiplicated by 2 to account for starting and 
holding a note. An additional neuron is added to pass the 
tempo. The LSTM layer is added to analyse the 16th samples 
in correlation to the past. Following the LSTM layer are two 
dense layers with the same 177 input and output neurons. 
The second dense layer functions as the output layer, from 
where the prediction can be read back into the internal 
format. 

VI. METHODS 
As mentioned, the data consists of two important parts: 

The actual keys pressed at a given time and the tempo of 
that time. The former is a categorical probability problem: 
The model must predict probabilities for a keypress for the 
given time. The latter is a real numerical problem: There is 
always a tempo in the score, it might change by a numerical 
value. This imposes a problem regarding Tensorflow using 
Keras: The simple sequential model can only be used with 
one loss function, which can therefore only optimise 
towards one of the two named problems. Either reducing 
loss on the probability of the keypresses or reducing loss on 
the numerical values of the tempo. This will further be 
discussed in the following section A. 

A. Solution Approach 
The base model, as stated, consists of one large LSTM 

layer with 61952 parameters, which is followed by two 
dense layers with 177 neurons each, which results in a total 
of 104,963 trainable parameters. The model performed 
slightly better with two dense layers, about 0.1 % higher 
accuracy than with only one. Deeper LSTMs, however, did 
not further increase the accuracy. This is mainly because the 
loss correction is flawed as mentioned above.  

1) RNN Split Model 
The issue of the two different problems that arise with 

the music data can be circumvented with a split model. 

Tensorflow and Keras allow to do this with the Functional 
API. The Functional API is more flexible regarding the 
design of the neural network, particularly, it allows for 
multiple input and outputs. This is necessary as we can 
define a different loss function on each of the output vectors. 
This enables us to use a cross entropy loss function for the 
pressed keys output and mean squared error for the 
numerical loss on the metronome (or tempo).  

2) Activation Functions 
The LSTM layer uses tanh as the activation function, as 

this is the only activation function for LSTMs that allows 
the use of cuDNN (Training on Nvidia GPUs) [8]. The first 
dense layer uses the default linear activation function. The 
last dense layer shows the best results with “softplus” 
activation. ReLU and sigmoid will yield slightly worse 
results.  

3) Loss Functions 
We chose mean-squared-error for the loss function for 

the non-split model over the full output vector. Using a cross 
entropy loss would be beneficial for the probability-
dependent outputs of the pressed keys but would completely 
invalidate the output for the tempo. To preserve meaningful 
output, mean squared error will result in good output for the 
tempo value, and will try to estimate a numerical value for 
the pressed keys: This will result in very small numbers less 
that one for the key outputs (Info: those would go in as either 
0 or 1) which cannot be directly interpreted as probabilities. 
Those output predictions must be interpreted by a decision 
algorithm to evaluate if a keypress needs to be put into the 
output MIDI file.  

4) Optimizers 
When trying to achieve better results optimizers can be 

used to dynamically adjust the 
weights on the nodes. The first 
versions of the LSTM used Adam, a 
stochastic gradient descent method 
as an optimizer that is a 
combination of RMSprop and 
momentum. Therefore, it includes 
the exponentially decaying average 
of past squared gradients as well as 
past non-squared gradients to 
compute an adaptive learning rate.  

However, Liu and 
Ramakrishnan [II] stated RProp 
provides better results since it only 
uses the sign of the derivative to 
adjust the learning rate and does not 
take the size of the partial 
derivatives into account. First tests 

of the LSTM confirmed that better result could be achieved. 
However, since RProp has difficulties to work with large 
datasets and its similarities to it RMSProp has been set as 
the optimizer of choice.  

B. Alternative Approaches 
GRU cells (Gated Recurrent Unit) can be used as an 

alternative to LSTM and were evaluated in comparison to 
the LSTM by replacing the LSTM layer with a GRU layer 
with the same number of units. This would reduce the 
training time by about 10-15%, as it also reduced parameter 
size to 89,667. But it did not yield better results in terms of 
the generated music. 

 
Figure 4: RNN Split Model using the Keras Functional API 
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VII. EXPERIMENTS 

A. Musical Rests 
First experiments showed an interesting behaviour of the 

RNN regarding musical rests.  

In many classical compositions, the intro begins with a 
rest that can last several seconds until the first note is played. 
The same applies to the outro, which may contain multiple 
rests after the last musical note played until the composition 
is finished. Musical pauses are also often used during a piece 

of music, which results in a high number of pauses used in 
total within one composition. 

Because of this high number, the neural network 
interpreted rests as something positive. Also, because the 
loss decreased when the RNN played rests, the first outputs 
of the network only included breaks. 

To avoid this behaviour in the first step the rests in the 
beginning and at the end of a composition have been 
removed from the input data.  

B. Hyperparameter Manipulation 
The Hyperparameters we chose to change throughout 

different runs were the following: Learning rate, epochs, 
and batch size, to compare them with different settings. Best 
results were achieved with 20 to 25 epochs with a learning 
rate of 0.002. This was determined with a batch size of 64 
and a deepness of 64 for the LSTM layer. Training with 
more epochs would slightly reduce the loss on the training 
data, but nearly no change on the validation set. This can 
also be seen in Figure 5. Training with more than 100 
epochs will then result in a quick spike in categorical cross 
entropy loss, after dropping rapidly to near zero categorical 
cross entropy loss. This indicated that the network learned 
to optimize against either zero or one for the key presses – 
which it did: after 150 epochs, the prediction output would 
only contain zeroes. We then settled with the conservative 
value of 25 epochs to further test on batch size. Batch size 
did not at all influence the output of the neural network, 
mini-batches performed in the same 0.001 loss interval 
around 0.015 as large batches (See Figure 6).  

 

 

Figure 5: Output from training on a Bach Score, this shows the 
problem with too many rests between notes. 

Figure 6: Training and validation categorical cross entropy, mean absolute error and loss for training with batch size 64 and LSTM layer 
size 64 for 200 epochs on the base model. 
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C. Regarding the Architecture 
(Split/Non-Split) 
All the shown experiments were 

done using the base model. We were not 
able to work with the split model 
architecture from the Keras Functional 
API due to restrictions with the 
Tensorflow Implementation and the way 
our dataset was formed. We would need 
to completely rework the data ingestion 
code to be able to train the split model 
[9]. This was not doable in the given 
amount of time. As our data is 
asymmetrical – consisting of only one 
value for the tempo and 176 values for 
the keys per timestamp. This would 
make NumPy arrays inappropriate for 
the input and output, as we would have 
175 empty values for one of the input 
vectors, producing unexpected input and 
output. Also batching these inputs 
correctly needs to be done as well as 
creating tensors for each input for the 
training and validation data. Doing these 
steps on each dataset itself would result 
in Tensorflow failing on running the first 
epoch. Ingesting the whole dataset at 
once would result in Tensorflow not being able to create 
Tensors from the arrays. Also, this made using timeseries 
data generators unusable as for generating the data for the 
whole (very large) dataset. 

D. Data Generator for Input Data 
Training on a single composer was possible with a 

standard 16 Gigabytes of system memory. Ingesting the 
whole music dataset at once and windowing the data for the 
model training results in requiring over 200 Gigabytes of 
system memory. This is not feasible for training, but we 
wanted to have to option to train on the whole dataset. This 
required us to use data generators. Tensorflow Keras 
provides the TimeseriesGenerator class for working with 
timeseries data, which fits our music data. In Tensorflow 
2.0, directly calling model.fit() with generators is possible 
(instead of using fit_generator()) which further reduces the 
effort for training with the whole dataset. With a Nvidia 
RTX 2070, training on GPU was done with a batch size of 
256, which took about 5 minutes per epoch to train with the 
whole dataset. Loss remained about the same 0.013 that was 
achieved with single composers. The predicted music 
subjectively has the same complexity and errors like 
training with a single composer. 

VIII. RESULTS 

A. Music Generation 
Regarding the goal of the generation of music, there are 

promising results. The resulting pieces of music tend to have 
the problem of long pauses and few variations of notes 
played, depending on the threshold used to analyse the 
prediction. In other cases, most notes will be played in 
perpetual 16th all the time. 

Nevertheless, in some of the generated pieces, accords 
are played in succession which will sound good. The results 
of course do not compare with the complexity of the music 
fed into the network. The GRU network compared to the 

LSTM performed better regarding an overall theme for the 
score, but used significantly more notes, which results in an 
oversaturation effect for the listener. The GRU overall has 
the same problem: The network cannot be perfectly 
optimized regarding the loss, as it the input and output is 
treated in the wrong way (only one input/output vector). 
This effect seems to prevent the network to train any further 
after a given point. 

IX. CONCLUSION 
We can conclude that even though we did get music with 

some accords played, out network would need to be much 
larger and more complex to learn to imitate a classic 
composer. The corresponding time and resources the 
network would need were too much for the scope of this 
project.  

In general, our dataset would need to be restructured. 
Most of the problems came from two facts. First, the 
metronome was included in the input vector. This input had 
a different ‘encoding’ from the note neurons and was never 
zero. We theorize that this adds an adverse effect on the 
quality of the prediction. One possible solution to this 
problem would be the introduction of a second network that 
calculates only the tempo for the slices, whereas the first 
network would be devoid of any tempo inputs. If 
Tensorflow would be able to work with multiple input 
generators for timeseries data, this would also enable the 
split RNN model described before to work with the given 
data. 

The second severe problem was the number of zeroes 
fed into the network. As discussed, this problem arose from 
the fact that a single note in a piece of music will be silent 
more often than it being played. As a result, the training data 
leads the neuronal network to believe that zeroes are the best 
possible output with the least amount of error generated 
during training. This might be mitigated by using a bias on 

 Figure 7: Training and validation categorical cross entropy, mean absolute error and loss 
with batch size 128 and LSTM layer size 64 for 15 epochs on the base model. All batch sizes 

performed like this one, if the other hyperparameters were not changed. 
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these inputs to reduce the impact, alternatively, this would 
also be approached by using a different loss function. 
LSTMs should be able to ignore parts of the input if they do 
not contribute to the output over time. 

A more complex network with a more complicated input 
tensor and more complex model with more layers and 
neurons is probably the solution to this problem (See the 
Functional API of Tensorflow/Keras for reference [10]). 

Another factor to the solution of this may be the 
introduction of a dynamic interpretation of the data. 
Whereas in the project a static threshold was used to decide 
if a note is played or not, changing this to a more intelligent 
algorithm may lead to better results in the generated music, 
ideally, the network would be deep enough to be able to 
decide this for itself, only outputting correct values that can 
be directly translated to a working MIDI file. 

X. RELATED WORKS 
Other research focuses on LSTM performance for music 

generation and recognition as well as gated recurrent units 
(GRUs), which is a gating mechanism for recurrent neural 
networks, especially LSTM.  

In Liu and Ramakrishnan [II] a LSTM network has been 
used to learn structure and rhythm of musical compositions. 
The results were similar pieces of music composed by the 
network itself. As stated in previous chapters, this project 
used a similar data structure regarding the musical notes 
represented as an 88-value input vector for the whole range 
of a piano from A0 to C8. 

Nayebi and Vitelli [III] used raw audio samples 
extracted from songs encoded in WAV format as input for 
a LSTM network instead of MIDI files as used in this 
project. However, they discovered performance impact as 
an effect of adding layers of recurrent units into the network. 

In other works, there are also variants like Peephole 
LSTM, hyperLSTM, feedback LSTM and the new 
multiplicative LSTM (mLSTM) discussed. 
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