

 Orchestration Service-Mesh Testbed

Lars Koenen
Institut für Nachrichtentechnik
Technische Hochschule Köln

Köln, Deutschland
lars.koenen@smail.th-koeln.de

Lars Borggrewe
Institut für Nachrichtentechnik
Technische Hochschule Köln

Köln, Deutschland
lars.borggrewe@smail.th-koeln.de

Philipp Kalytta
Institut für Nachrichtentechnik
Technische Hochschule Köln

Köln, Deutschland
philipp.kalytta@smail.th-koeln.de

Abstract—This paper gives a short overview on deploying a
functional testbed for orchestrating a service-mesh via Istio on
a Kubernetes cluster with Docker Containers.

Keywords—orchestration, service, mesh, testbed, Kubernetes,
Istio, Docker

I. PROBLEM OBJECTIVE
 The objective of this paper is to demonstrate the
deployment of a Kubernetes-based service mesh that is
orchestrated with the Istio Software. As a beginning, let’s
look at what a service mesh is. The Istio website defines a
service mesh as follows: “The term service mesh is used to
describe the network of microservices that make up […]
applications and the interactions between them. As a service
mesh grows in size and complexity, it can become harder to
understand and manage. Its requirements can include
discovery, load balancing, failure recovery, metrics, and
monitoring.” [1]. Istio states to satisfy these requirements by
providing control over the complete service mesh
architecture. The goal is to test the deployment of Istio and
how far it satisfies the proclaimed objective.

A. Problem Sections
 The problem objective consists of multiple sections: First,
the assembly of the physical hardware part of the testbed.
Second, the installation of the Docker, Kubernetes and Istio
software. Third, the deployment of a storage provider (needed
for the chosen service-mesh, as it is stateful, more on that
later). Fourth, the deployment of the actual application as a
service-mesh on the infrastructure. And fifth, the testing of
the service-mesh and its orchestration tools (Istio and
Kubernetes).

B. Problem Section 1 – The Hardware
 For the hardware, we were given four desktop computers
with a single NIC (Network Interface Card), sixteen
Gigabytes of RAM and a 500 Gigabytes HDD. We should
use this hardware as the base of our testbed. This also implies
some special requirements to the software that is used on top
of it, as this is a limited hardware choice, especially given that
a usual cluster setup would require far more nodes and would
be built onto server hardware.

C. Problem Section 2 – The Software
 The Software to use is also fixed (apart from the operating
system, which we chose to be Ubuntu Linux 18.04 LTS): We
are tasked to deploy and orchestrate a service-mesh on
Docker, Kubernetes and Istio. This includes the installation
of the named on the four computer nodes and configurating
the tools to interact with each other.

D. Problem Section 3 – Storage
 As of storage (needed for the stateful containers in the
application), we were given no special requirements. But we
decided to use a distributed storage solution. Ideally, a
storage solution that could be run on Kubernetes. Ceph
delivers such a storage solution that can be deployed on
Kubernetes [2].

E. Problem Section 4 – The Application
 We are free to choose the application that we deploy, it is
only limited within some rules:

1. The application must relate to the lecture content
2. The application should be a multimedia application
3. The application should be deployed fully within the

Kubernetes cluster

F. Problem Section 5 – The Testing
 We are tasked to define some test-cases to evaluate the
service-mesh testbed and the used software, especially Istio
and its pros and cons. This should include testing of load-
balancing, high loads and HTTPS deployment. These are
some of the features Istio provides.

II. SOLUTION APPROACH

A. Basics
1) Container
 A container is a standardized unit that contains a
process of an application or a microservice and all the
dependencies and libraries that the application-process
needs, isolated from other processes. Thus, the container is
not dependent on the underlying operating system and the
application behaves the same in every environment. Only
the kernel must be shared by the container with the
underlying operating system. One or more containers can
run on the same host [3].
These characteristics of containers are possible, because of
Linux namespaces and control groups. Each Container has
its own namespace to be isolated from other processes on
the host and has limited access to resources through control
groups [4].
2) Docker
 Docker is an open source Software-platform for
building, distributing and running containerized
applications [5]. The three most important parts of Docker
are the container-image, the Registry and the Docker
Container. A container-image contains all metadata of a
containerized Application and it´s environment [6]. Docker
can build an image of a container automatically by reading
instructions from a Dockerfile. The Dockerfile is a file the

user of Docker, who wants do containerize an application,
writes to define the image [7].
A Docker-Registry is a depository for Docker Images. It
can be used to access the stored images by other computers.
Docker provides a public Registry for container-images
from software vendors, users and open-source projects [5].
 A Docker-Container is a running Docker-Image using the
Container-Technology.

3) Kubernetes
 Kubernetes is a software system for provision and
management of containers. It helps the developer with the
tasks of service localization, scaling, load balancing and
self-healing. The architecture of Kubernetes consists of a
master node and any number of worker nodes. The master
node controls and manages the cluster of worker nodes.
The worker nodes execute the applications submitted on
the master node. If not specified on which node, the
executing worker node is randomly selected. On the
working nodes, the applications are executed in the form of
containers, for example, Docker Containers. For this to be
possible, the container images to be executed must be
provided in a registry that Kubernetes can access to pull the
images of the container [6].

4) Service Mesh
 A service mesh is a technology to control interactions
and shared data between services. It does not replace
networking but is a communication infrastructure that is
built into the application.
It is therefore independent of the underlying network
structure and is therefore a solution to control the
communication in an application that is located in the cloud
[8].

5) Istio
 The functions of Istio can be divided into the three
generic terms traffic management, security and
observability. In traffic management rules for interaction
and routing within the application are defined. As a
security function Istio offers management authentication,
authorization and encryption of communication. In
addition, it is possible to set up and adjust monitoring for
this communication in Istio, so that the exchange between

the services can be monitored optimally, this is done by
deploying so called sidecars with the actual application
pods and redirect all traffic through these sidecars. [9]

B. Testbed Setup
In the following table all images of containers, that are used
in this paper are listed:

Images Description
php:7.3.11-apache-buster Webserver
nginx:1.17.6 Cache-Server
mysql:5.6 Database
phpmyadmin Database-Management
rook/ceph Shared storage

1) Apache-Webserver

 The Apache webserver container is responsible for
providing the website and videos. The code of the website is
directly integrated into the container image, so that the
number of webserver containers can be easily scaled by
Kubernetes. The metadata necessary for the website is
provided to a container instance from a MySQL database.
The video data is provided to a webserver instance from the
distributed file system, which is mounted as a local folder
when the instance is started. The website delivered by the
webserver consists of a start page, a playback page and a
video upload page. The start page gives an overview of all
available videos. On the playback page, the video can be
played in an HTML5 video player and the metadata of the
video is displayed. On the upload page a new video can be
uploaded into the system together with metadata the user
provides.

2) Nginx-Cache-Server
 The nginx container is used in this configuration as a
cache server. Besides the content of the website, byte-ranges
of the videos are also cached. This reduces the response time
of the system as well as the load on the downstream
containers. The most important point here is to reduce the
load on the shared file system.

3) MySql-Database
 The MySQL database container handles the persistent
storage of the video metadata. For each video the title,
description, video categories, number of views and the

Requests

Webserver
(apache)

Istio
Sidecar

Cache-Server
(nginx)

Istio
Sidecar

Database
(MySQL)

Istio
Sidecar

DB-Management
(phpmyadmin)

Istio
Sidecar

Shared storage
(Ceph)

Istio
Sidecar

DB storage

Video meta dataSite requests

Video files

Istio
Gateway

Requests

Figure 1: Service Mesh Testbed Architecture

filename of the video in the shared filesystem are stored. The
database container instance itself also stores its data in the
shared filesystem.

4) PhpMyAdmin
 For the administration of the MySQL database a
phpMyAdmin instance was also deployed in the Kubernetes
cluster. In contrary to the main page it is only accessible
internally in the cluster.

5) Ceph
As already mentioned, several times before, a distributed file
system is used in this setup. During development, Ceph was
chosen because it supports the mandatory ReadWriteMany
access mode [10]. This is important because it should be
possible for different users to watch and upload videos
simultaneously. For the deployment of Ceph in the cluster the
storage orchestrator Rook was used. Rook allows the native
integration of Ceph into Kubernetes and handles the
management, scaling and healing of the storage service [11].

III. EVALUATION RESULTS

A. Evaluation of the Istio Software
 The evaluation part of this task can be divided into four
parts, answering the following questions: 1. How des Istio
integrate into a Kubernetes environment? 2. How does Istio
provide monitoring of the deployed application? How does
traffic routing and traffic control work in Istio? And how can
we secure the application?

1) Integration of Istio in Kubernetes
 Istio can be installed directly on the Kubernetes cluster,
we chose to install it with Helm [3], which can be used to
manage Kubernetes applications. But it can also be installed
with plain Kubernetes commands (over Kubectl) which
means it can be seamlessly integrated into the given
Kubernetes deployment. The Istio team provides a set of
Helm template files on their GitHub Repository [4], which
were used to setup the Software. We then chose to enable the
Istio software to automatically deploy sidecars to our
applications containers, so that all traffic is send over the Istio
software. This integration is robust and straight-forward. It
doesn’t even require a cluster-restart to work, the sidecars
will work right away if deployed on an already existing
namespace or a new namespace.

2) Monitoring with Istio
 The monitoring on Istio is done over the internal Mixer
service and the Prometheus service. The telemetry data can
be visualized via Grafana. The sidecars enable Istio to collect
the full TCP traffic in the service-mesh (given that the sidecar
is deployed on every pod). For the collection of logging data
and other metrics, the user must define the log format himself.
Istio is heavily focused on HTTP/TCP Traffic for the
application traffic, especially regarding monitoring. Apart
from that, Istio collects the traffic information without using
it. The user cannot define rules or goals for the monitoring
and must rely on the monitoring rules that are defined by Istio
itself.

3) Traffic Routing and Control
 Istio holds its own list containing all endpoints and
services in the service mesh. This way, if a pod is deployed
with a sidecar, Istio knows how to handle the traffic. This is
especially important if you have multiple Versions of a pod
or service in your cluster and you want to load balance the
pool of services. By default, the traffic is split on a round-
robin basis between the members of the service pool. Istio
provides a more sophisticated way to split the traffic, by using
so called virtual services, destination rules and gateways. A
virtual service lets you configure, how requests are routed to
the service. A request to a virtual service will trigger the
evaluation of some associated destination rules that will
specify a real destination in the service mesh. Istio decouples
the client form the actual service and is now able to specify
routing rules for the workloads. In example, this enables Istio
to do a percentage-based destination routing: 5 percent of the
traffic should go to service A and 95 percent should go to
service B. This is a typical use case in rolling out a new
version of a service. The virtual service would be the
abstraction layer in front of the real service, that exists in
parallel in different versions. The new version could be tested
with only 5 percent of the users, this would minimize risk for
the developers and discomfort for the users. For high-usage
service meshes, it might be necessary to load balance via
“Least requests” (The pod with the least requests gets the next
request), which is also possible. In HTTP, Istio also is able to
split traffic on header fields or the URL. It is possible to let a
subset of a web-application be handled by a completely
different service behind virtual service (that the user sees and
uses). To access virtual services from the outside of your
mesh and to manage the inbound and outbound traffic on the
edge of the service mesh, an Istio gateway is used. There, you
can specify what traffic is allowed into and out of the mesh.
The virtual services are bound to a gateway and the rules
defined for the gateway then apply to the virtual service as
well.

4) Securing the Application - HTTPS over Istio

 The Application is accessible via HTTP. To secure the
access to the applications incoming traffic, the Istio gateway
can be expanded to not only listen for HTTP traffic, but, on a
second port, to listen for HTTPS traffic. This is done by
modifiyng the gateway configuration and adding a second
port section to it (See appendix, “gateways.json”): This port
section then specifies HTTPS as protocol and can be further
configured by a “TLS” config section. The private key and
certificate (those have to be generated beforehand or recevied
from a trusted third party) can then be referenced in this
section. HTTPS can also be restricted to only relay traffic to
certain hosts or to only be deployed for certain parts of the
application (mixed content). More options in the TLS part of
the configuration enable the redirection of HTTP to HTTPS
and definition of minimum and maximum HTTP versions to
use as well as setting supported cipher suites. The deployment
of HTTPS works on-the-fly, other services won’t see an
interruption while deploying HTTPS side by side with the
existing service. The deployment via an Istio gateway will
also obfuscate the underlying service mesh, as an external
user will only see the gateway properties (Istio gateway web
server fingerprint).

B. Evaluation of the deployed Service-Mesh
 The service mesh application was evaluated to check how
it performs in a real-world use-case. Some video files were
uploaded to the application to use them as a reference point.
They were then requested by clients together with the
associated metadata in the database. At first, some single
requests were made by hand using a web browser. While
showing that the application works in the desired way, this
proved to be too little traffic to test the limits of the service
mesh deployment with Istio. It could only show that the flows
in the application behaved according to the traffic routing
rules that were defined via Istio (i.e. we could see that traffic
routed to a different version of our containers would result in
an different output to the user). To further test the service
mesh, an automated way of testing was deployed.

1) Performance Evaluation
 An automated shell script was used on several client
nodes, that would request a large number of resources from
the application at once simultaneously. The script would try
to max out the number of concurrent connections and would
also request non-existent resources as well as existent ones.
This is comprised of the video files (this simulates a video
playback on the client) as well as the webpages (this
simulates users requesting the video overview page on a web
browser), which were generated dynamically. Most of these
requests had unique URL-parameters, which means that the
caching containers could only cache a part of the requested
URLs. This enables the script to better test the service behind
the caching containers.
We observed that we never saw more egress traffic that one
Gigabit per second in sum over all the client nodes. Every
cluster node was connected via a one Gigabit Ethernet link.
This led to the observation, that all traffic in the cluster, that
came from outside was routed over to one node, although the
DNS was configured to serve all three cluster nodes as a
connection point for the clients. Internally, Istio deploys its
own ingress traffic gateways on a single node and the
administrator has no apparent way of choosing where the
gateways will be deployed. This limits the traffic handling
capabilities to the maximum of the link speed of the chosen
node. In contrast, a service that is deployed directly in
Kubernetes and load-balanced via DNS, would be able to use
the links of all three cluster nodes, giving a total of three
Gigabit per second of ingress and egress traffic (minus inter-
node traffic).

IV. DISCUSSION AND CONCLUSION

A. Documentation and API
 Istio was released in 2017 and has been further developed
up to the current version 1.4.3 (as of 20.01.2020). Although
the version has a major release and Istio has many basic
functions for a service mesh, many required functions are still
in alpha or beta stage. For example, IPv6 support is still in
alpha, locality load balancing and authorization are in beta,
although these are features that are of high importance. Users
have yet to wait for a stable version of these elements.
As young as the service mesh is the documentation. It
describes the implementation of the functions of Istio in small
examples or with the example application "Bookinfo". Each
feature is represented by at least one YAML file and the

possible use-cases are explained. Nevertheless, the
documentation has the following weaknesses: "Bookinfo"
uses the outdated version 1.3; for some functions, the
documentation consists of a YAML file without an exact
explanation of the structure and the displayed attributes, it
also hardly contains any comments.

B. Pros and Cons of Istio
 Istio allows for deployment on a new or already existing
Kubernetes Cluster that might already contain services. Even
the rollout of sidecars to already existing pods didn't interrupt
the functionality of the service mesh. The routing of the
traffic over Istios Gateways offers both, pros and cons: The
granular control over how the traffic should be treated and
routed internally in the service mesh enables the
administrator to get a much finer control over the network
traffic. But the apparent limit for ingress traffic to be routed
through only one node limits the ability for high availability
and high bandwidth service meshes. Istio tries to centralize
the monitoring but fails to deliver a consistent and useful
monitoring experience. This all together with the bad
documentation and somewhat immature API points to the
question if Istio at this point is a useful software to use. In
view of large-scale applications Istio certainly will help
controlling and securing the traffic, but only to a degree. We
leave it to the reader to decide if Istio can be considered for
their use-case.

C. IPv6 with Istio
 Another point to look at is the IPv6 support for Istio,
especially since RIPEs IPv4 pool is depleted [13]: Kubernetes
supports Ipv6-only clusters since 1.9 and Istio gained IPv6
support with version 1.2 (current version, as of writing of this
paper is version 1.4), but the authors stated that the state of
the IPv6 implementation is in experimental alpha [14]. We
didn't make use of IPv6 in this testbed but it's worth a
reminder that if you plan on using Istio in an IPv6
environment, this might cause additional challenges before
being able to make use of Istios feature set.

D. Is Istio worth being implemented?
 Finally, of course, there is the question. Is Istio
worthwhile?
We have concluded, yes, but with limitations. The features
that Istio offers in the areas of traffic management, security
and observability are hardly or not at all covered by
Kubernetes, as Kubernetes is mainly focused on
infrastructure and resource management. From this point of
view, Istio is a clear benefit for a service mesh. after setting
up Istio, you quickly realize that Istio requires many
containers and thus a considerable amount of resources.
Therefore, the use of Istio should only be considered for
larger service meshes. But especially for larger product
systems a very good reliability and stability is required, which
is unfortunately still missing in the current status of Istio. This
is reflected in the software as well as in the documentation of
Istio. All in all, we see Istio as a good approach, which
unfortunately still lacks maturity to be used in a meaningful
way.

V. REFERENCES

[1] Istio.io, „Istio / What is Istio?,“ Istio.io, 14 11 2019.
[Online]. Available:

https://istio.io/docs/concepts/what-is-istio/#what-is-a-
service-mesh. [Zugriff am 27 12 2019].

[2] Red Hat Inc., „Installation (Kubernetes + Helm) -
Ceph Documentation,“ 2016. [Online]. Available:

https://docs.ceph.com/docs/mimic/start/kube-helm/.
[Zugriff am 04 01 2020].

[3] Docker Inc., „What is a Container?,“ [Online].
Available: https://www.docker.com/resources/what-

container. [Zugriff am 20 01 2020].
[4] Microsoft Corp., „Introduction to Containers and

Docker,“ [Online]. Available:
https://docs.microsoft.com/en-

us/dotnet/architecture/microservices/container-
docker-introduction/. [Zugriff am 20 01 2020].

[5] Docker Inc., „Why Docker?,“ [Online]. Available:
https://www.docker.com/why-docker. [Zugriff am 20

01 2020].
[6] MarkoLuksa, Kubernetes in Action, Manning

Publications, 2018.
[7] Docker Inc., „Dockerfile reference,“ [Online].

Available:
https://docs.docker.com/engine/reference/builder/.

[Zugriff am 20 01 2020].
[8] Red Hat Inc., „What is a service mesh?,“ [Online].

Available:
https://www.redhat.com/en/topics/microservices/what

-is-a-service-mesh. [Zugriff am 20 01 2020].
[9] Red Hat Inc., „What is Istio?,“ [Online]. Available:

https://www.redhat.com/en/topics/microservices/what
-is-istio. [Zugriff am 20 01 2020].

[10] Kubernetes.io, „Persistent Volumes - Kubernetes,“ 20
01 2020. [Online]. Available:

https://kubernetes.io/docs/concepts/storage/persistent-
volumes/#access-modes. [Zugriff am 20 01 2020].

[11] Rook Authors, „Rook.io,“ 2020. [Online]. Available:
https://rook.io/docs/rook/v1.2/. [Zugriff am 19 01

2020].
[12] Cloud Native Computing Foundation, „Helm Docs |

Helm,“ 2019. [Online]. Available: https://helm.sh/.
[Zugriff am 13 01 2020].

[13] Istio.io, „istio/install/kubernetes/helm/istio/ -
istio/istio,“ 13 01 2020. [Online]. Available:

https://github.com/istio/istio/tree/master/install/kubern
etes/helm/istio. [Zugriff am 16 01 2020].

[14] RIPE NCC, „RIPE IPv4 Pool,“ 20 01 2020. [Online].
Available: https://www.ripe.net/manage-ips-and-

asns/ipv4/ipv4-pool. [Zugriff am 20 01 2020].
[15] Istio.io, „Istio / About,“ 2019. [Online]. Available:

https://istio.io/about/feature-stages/#core. [Zugriff am
21 01 2020].

VI. APPENDIX

A. Configs
https://th-koeln.sciebo.de/s/ukYVTQo8qtirVQl

B. Code
https://th-koeln.sciebo.de/s/ukYVTQo8qtirVQl

C. Container
Images Hyperlink
php:7.3.11-apache-
buster

https://hub.docker.com/_/php

nginx:1.17.6 https://hub.docker.com/_/nginx
mysql:5.6 https://hub.docker.com/_/mysql
phpmyadmin https://hub.docker.com/r/

phpmyadmin/phpmyadmin
rook/ceph https://hub.docker.com/r/rook/ceph

	I. Problem Objective
	A. Problem Sections
	B. Problem Section 1 – The Hardware
	C. Problem Section 2 – The Software
	D. Problem Section 3 – Storage
	E. Problem Section 4 – The Application
	F. Problem Section 5 – The Testing

	II. Solution Approach
	A. Basics
	1) Container
	2) Docker
	3) Kubernetes
	4) Service Mesh
	5) Istio

	B. Testbed Setup
	1) Apache-Webserver
	2) Nginx-Cache-Server
	3) MySql-Database
	4) PhpMyAdmin
	5) Ceph

	III. Evaluation Results
	A. Evaluation of the Istio Software
	1) Integration of Istio in Kubernetes
	2) Monitoring with Istio
	3) Traffic Routing and Control
	4) Securing the Application - HTTPS over Istio

	B. Evaluation of the deployed Service-Mesh
	1) Performance Evaluation

	IV. Discussion and Conclusion
	A. Documentation and API
	B. Pros and Cons of Istio
	C. IPv6 with Istio
	D. Is Istio worth being implemented?

	V. References
	VI. Appendix
	A. Configs
	B. Code
	C. Container

